Phase transition and phase separation of formamidinium-cesium(FA-Cs)perovskite during the fabrication and operation processes reduce the efficiency and stability of perovskite solar cells(PSCs).Here,we develop an in s...Phase transition and phase separation of formamidinium-cesium(FA-Cs)perovskite during the fabrication and operation processes reduce the efficiency and stability of perovskite solar cells(PSCs).Here,we develop an in situ molecular self-assembly approach on perovskite surface using an amine nickel porphyrin(NiP).The NiP doped perovskite precursor solution was deposited on substrate by blade-coating under ambient condition.NiP molecules self-assemble into supramolecule bound on perovskite surface during the vacuum-assisted process.Such a modification controls the perovskite grain growth to generate the uniform perovskite film.The supramolecule can release the residual lattice strain to inhibit the phase transition of perovskite film,and promote the charge extraction and transport to suppress the phase separation of FA-Cs perovskite during long-term illumination condition.Consequently,the best efficiency of large-area NiP-based FA-Cs-PSCs with the active area of 1.0 cm2 is up to 20.3%(certified as 19.2%),which is close to the record efficiency(20.37%)by blade-coating.Unencapsulated NiP-doped device reveals the remarkably improved overall stabilities.This work affords a novel way to address the phase transition and phase separation in FA-Cs perovskite.展开更多
Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensiona...Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family.展开更多
Lead-free bismuth sodium titanate(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)and related solid solutions are potential piezoelectric materials for such applications as actuators and transducers if their excellent strain responses a...Lead-free bismuth sodium titanate(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)and related solid solutions are potential piezoelectric materials for such applications as actuators and transducers if their excellent strain responses and piezoelectric properties can be optimized.In this work,a large strain response of 0.61%is achieved in lead-free(0.94-x%)(Bi_(0.5)Na_(0.5))TiO_(3)-0.06BaTiO_(3)-x%NaNbO_(3)(x=0 e6,BNT-6BT-xNN)ceramics with the composition of x=3.5 in a pseudo-cubic structure.Coexistence of ferroelectric(FE)and relaxor(RE)domain structures is observed in all the unpoled ceramics and the enhanced strain response is believed to be related to the evolution of the ergodic relaxor(ER)and non-ergodic(NR)states thanks to the substitution of antiferroelectric NN.BNT-6BT-3.5NN is a critical composition near the FE/NR/ER phase boundary close to room temperature(RT)and its high strain response arises from a synergistic combination of a reversible electric-field-induced phase transition and an active domain switching in the mixed NR/ER state.This work provides new insights into the dynamic interplay between mesoscopic domains and macroscopic electrical properties in the BNT-based piezoceramics.展开更多
The rapid growth in global electric vehicles(EVs)sales has promoted the development of Co-free,Ni-rich layered cathodes for state-of-the-art high energy-density,inexpensive lithium-ion batteries(LIBs).However,progress...The rapid growth in global electric vehicles(EVs)sales has promoted the development of Co-free,Ni-rich layered cathodes for state-of-the-art high energy-density,inexpensive lithium-ion batteries(LIBs).However,progress in their commercial use has been seriously hampered by exasperating performance deterioration and safety concerns.Herein,a robust single-crystalline,Co-free,Ni-rich LiNi_(0.95)Mn_(0.05)O_(2)(SC-NM95)cathode is successfully designed using a molten salt-assisted method,and it exhibits better structural stability and cycling durability than those of polycrystalline LiNi_(0.95)Mn_(0.05)O_(2) (PC-NM95).Notably,the SC-NM95 cathode achieves a high discharge capacity of 218.2 mAh g^(-1),together with a high energy density of 837.3 Wh kg^(-1) at 0.1 C,mainly due to abundant Ni^(2+)/Ni^(3+) redox.It also presents an outstanding capacity retention(84.4%)after 200 cycles at 1 C,because its integrated single-crystalline structure effectively inhibits particle microcracking and surface phase transformation.In contrast,the PC-NM95 cathode suffers from rapid capacity fading owing to the nucleation and propagation of intergranular microcracking during cycling,facilitating aggravated parasitic reactions and rocksalt phase accumulation.This work provides a fundamental strategy for designing high-performance singlecrystalline,Co-free,Ni-rich cathode materials and also represents an important breakthrough in developing high-safe,low-cost,and high-energy LIBs.展开更多
"Rocking chair"type lithium-ion batteries with lithium metal-free anodes have been successfully com-mercialized over the past few decades.Zinc-ion batteries(zIBs)have gained increasing attention in recent ye..."Rocking chair"type lithium-ion batteries with lithium metal-free anodes have been successfully com-mercialized over the past few decades.Zinc-ion batteries(zIBs)have gained increasing attention in recent years given their safety,greenness,ease of manufacture,and cost-efficiency.Nevertheless,the practical application of ZIBs is largely hindered by the dendritic growth of the Zn metal anode,low Coulombic eficiency,great harm,and existence of various side reactions.Herein,this review provides a systematic overview of emerging"rocking chair"type ZIBs with zinc metal-free anodes.Firstly,the basic fundamen-tals,advantages,and challenges of“rocking chair”type ZIBs are introduced.Subsequently,an overview of the design principles and recent progress of"rocking chair"type ZIBs with zinc metal-free anodes are presented.Finally,the key challenges and perspectives for future advancement of"rocking chair"type ZiBs with zinc metal-free anodes are proposed.This review is anticipated to attracted increased focus to metal-free anodes"rocking chair"type metal-ion battery and provide new inspirations for the develop-ment of high-energy metal-ion batteries.展开更多
In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,a...In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,and energy storage properties were performed.The NNBT-0.25CLT ceramic with orthorhombic phase at room temperature was found to exhibit extremely small grain size and compacted microstructure.A large Wrec of 3.1 J/cm^(3) and a highηof 91.5%under the electric field of 360 kV/cm were achieved simultaneously in the sample.In addition,the energy storage performance of the sample exhibits thermal stability over the temperature range of 25-140°C and the frequency range of 5-500 Hz.The charge and discharge tests reveal that the ceramic shows a large current density CD of 965 A/cm2 and power density PD of 154 MW/cm^(3).This work demonstrates that the NNBT-0.25CLT ceramic is a prospective energy storage material for potential application in the field of pulsed power devices.展开更多
Ferroelastic materials with switchable spontaneous strain possess widely potential applications in the field of energy and information conversion.Recently,organic-inorganic hybrid halide double perovskites (OIHHDPs) h...Ferroelastic materials with switchable spontaneous strain possess widely potential applications in the field of energy and information conversion.Recently,organic-inorganic hybrid halide double perovskites (OIHHDPs) have become a charming new platform for developing various functional materials,such as ferroelectrics,fluorescence and X–ray detection.Nevertheless,OIHHDP ferroelastic materials,especially high-temperature ones,are rare.Herein,we initially synthesized an OIHHDP ferroelastic,(2,2-difluoroethanamine)_(2)[(NH_(4))InCl_6](1),which possesses a ferroelastic phase transition at 407 K.Moreover,thanks to the flexible B-site for OIHHDPs,we replaced the NH_(4)^(+) ions within[(NH_(4))InCl_6]_n^(2n–)formworks with K^(+)ions,which endows with coordination bonds between 2,2-difluoroethanamine organic cations and[KInCl_6]_n^(2n–)formworks.Due to the existence of coordination bonds,the phase transition temperature of (2,2-difluoroethanamine)_(2)[KInCl_6](2) can reach 458 K.As far as we know,this value is the highest reported in OIHHDP ferroelastics.This work offers inspiration for the design of high-temperature OIHHDP phase transition materials including ferroelectrics and ferroelastics.展开更多
The layered heterometallic halide perovskites, as a newly explored material, have attracted great scientific attention. As one of the representatives of perovskite, lead-free or lead-substituted perovskite materials a...The layered heterometallic halide perovskites, as a newly explored material, have attracted great scientific attention. As one of the representatives of perovskite, lead-free or lead-substituted perovskite materials are widely applied in photovoltaic, sensors, catalysis, detectors and other fields. Therefore, it is urgent to carry out more systematic exploration and expand applicable preresearch, so as to make more interesting discoveries in this new hot spot. As an interesting candidate, heterometallic compounds will introduce more structural adjustability and novel physical properties, which is the main feature to be selected as the research hotspot. Here, we reported a lead-free bilayer heterometallic Ruddlesden-Popper(RP) type perovskite, [(MACH)_(2)CsAgBiBr_(7)](MACH = cyclohexanemethylamine), which possesses a reversible phase transition at 379.6 K/375.1 K during heating-cooling cycle. Besides, it exhibits reddish-brown light emission under 365 nm, meanwhile, CIE chromaticity coordinate is(0.32, 0.45) on the yellow side and correlated color temperature is about 6000 K. Moreover, both the experimental data and theoretical calculation results suggest that [(MACH)_(2)CsAgBiBr_(7)] shows indirect semiconducting characteristics. In summary, this work will inspire the design of lead-free heterometallic perovskite materials for the application of sensors and light-emitting diodes(LEDs) fields.展开更多
Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performan...Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performance and protect the MoO_(x)in acidic media.A thin film of graphene is transferred onto the MoO_(x)layer,after which the graphene structure is doped with N and S atoms at room temperature using a plasma doping method to modify the electronic structure and intrinsic properties of the material.The oxygen functional groups in graphene increase the interfacial interactions and electrical contacts between graphene and MoO_(x).The appearance of surface defects such as oxygen vacancies can result in vacancies in MoO_(x).This improves the electrical conductivity and electrochemically accessible surface area.Increasing the number of defects in graphene by adding dopants can significantly affect the chemical reaction at the interfaces and improve the electrochemical performance.These defects in graphene play a crucial role in the adsorption of H^(+)ions on the graphene surface and their transport to the MoO_(x)layer underneath.This enables MoO_(x)to participate in the reaction with the doped graphene.N^(‐)and S^(‐)doped graphene(NSGr)on MoO_(x)is active in acidic media and performs well in terms of hydrogen production.The initial overpotential value of 359 mV for the current density of−10 mA/cm^(2)is lowered to 228 mV after activation.展开更多
Chiral organic-inorganic metal halide semiconductors(OIMHSs)have recently attracted numerous interests due to their unique chirality,structural tunability,and extensive physical properties.However,most reported chiral...Chiral organic-inorganic metal halide semiconductors(OIMHSs)have recently attracted numerous interests due to their unique chirality,structural tunability,and extensive physical properties.However,most reported chiral OIMHSs contain toxic lead,which will be a potential obstacle to their further applications.Herein,we successfully synthesized a novel chiral lead-free tin(IV)-based OIMHS[(R)-3-hydroxyquinuclidinium]_(2)SnCl_(6)([R-HQ]_(2)SnCl_(6)).It exhibits a wide band gap(Eg)of about 4.11 eV.Moreover,[R-HQ]_(2)SnCl6 undergoes a phase transition around 330 K(Tc)and shows distinct dielectric switching characteristics with good repeatability.This work enriches the chiral lead-free OIMHS family and stimulates further exploration of chiral lead-free OIMHS switching materials.展开更多
This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping rela...This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.展开更多
基金We acknowledge the National Natural Science Foundation of China(No.22075116)Fundamental Research Funds for the Central Universities of China(No.lzujbky-2021-ey10)Science and Technology program of Gansu Province(No.20JR5RA305).
文摘Phase transition and phase separation of formamidinium-cesium(FA-Cs)perovskite during the fabrication and operation processes reduce the efficiency and stability of perovskite solar cells(PSCs).Here,we develop an in situ molecular self-assembly approach on perovskite surface using an amine nickel porphyrin(NiP).The NiP doped perovskite precursor solution was deposited on substrate by blade-coating under ambient condition.NiP molecules self-assemble into supramolecule bound on perovskite surface during the vacuum-assisted process.Such a modification controls the perovskite grain growth to generate the uniform perovskite film.The supramolecule can release the residual lattice strain to inhibit the phase transition of perovskite film,and promote the charge extraction and transport to suppress the phase separation of FA-Cs perovskite during long-term illumination condition.Consequently,the best efficiency of large-area NiP-based FA-Cs-PSCs with the active area of 1.0 cm2 is up to 20.3%(certified as 19.2%),which is close to the record efficiency(20.37%)by blade-coating.Unencapsulated NiP-doped device reveals the remarkably improved overall stabilities.This work affords a novel way to address the phase transition and phase separation in FA-Cs perovskite.
基金financially supported by National Natural Science Foundation of China(Nos.22125110,22205233,22193042,21833010,21921001,and U21A2069)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBSLY-SLH024)+3 种基金the National Postdoctoral Program for Innovative Talents(No.BX2021315)the National Key Research and Development Program of China(No.2019YFA0210402)the China Postdoctoral Science Fund(No.2022TQ0337)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR126)。
文摘Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family.
基金supported by the Natural Science Foundation of China(Grant No.51902246,12161141012,and 12174299)the China National Key R&D Program(Grant No.2021YFB3201800 and 2020YFC0122100)+5 种基金the Natural Science Fundamental Research Project of Shaanxi Province of China(No.2019JQ590)the Key R&D Program of Shaanxi Province of China(2020GY-271)the Fundamental Research Funds for the Central Universities(xzd012020059)the“111 Project”of China(B14040)the Natural Sciences&Engineering Research Council of Canada(NSERC,Discovery Grant No.RGPIN-2017-06915)Xijiang Innovation Team Introduction Program of Zhaoqing(Jiecheng).
文摘Lead-free bismuth sodium titanate(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)and related solid solutions are potential piezoelectric materials for such applications as actuators and transducers if their excellent strain responses and piezoelectric properties can be optimized.In this work,a large strain response of 0.61%is achieved in lead-free(0.94-x%)(Bi_(0.5)Na_(0.5))TiO_(3)-0.06BaTiO_(3)-x%NaNbO_(3)(x=0 e6,BNT-6BT-xNN)ceramics with the composition of x=3.5 in a pseudo-cubic structure.Coexistence of ferroelectric(FE)and relaxor(RE)domain structures is observed in all the unpoled ceramics and the enhanced strain response is believed to be related to the evolution of the ergodic relaxor(ER)and non-ergodic(NR)states thanks to the substitution of antiferroelectric NN.BNT-6BT-3.5NN is a critical composition near the FE/NR/ER phase boundary close to room temperature(RT)and its high strain response arises from a synergistic combination of a reversible electric-field-induced phase transition and an active domain switching in the mixed NR/ER state.This work provides new insights into the dynamic interplay between mesoscopic domains and macroscopic electrical properties in the BNT-based piezoceramics.
基金This work was financially supported by National Key Research and Development Program of China(2019YFC1907805)Fundamental Research Funds for the Central Universities of Central South University(2021zzts0072).
文摘The rapid growth in global electric vehicles(EVs)sales has promoted the development of Co-free,Ni-rich layered cathodes for state-of-the-art high energy-density,inexpensive lithium-ion batteries(LIBs).However,progress in their commercial use has been seriously hampered by exasperating performance deterioration and safety concerns.Herein,a robust single-crystalline,Co-free,Ni-rich LiNi_(0.95)Mn_(0.05)O_(2)(SC-NM95)cathode is successfully designed using a molten salt-assisted method,and it exhibits better structural stability and cycling durability than those of polycrystalline LiNi_(0.95)Mn_(0.05)O_(2) (PC-NM95).Notably,the SC-NM95 cathode achieves a high discharge capacity of 218.2 mAh g^(-1),together with a high energy density of 837.3 Wh kg^(-1) at 0.1 C,mainly due to abundant Ni^(2+)/Ni^(3+) redox.It also presents an outstanding capacity retention(84.4%)after 200 cycles at 1 C,because its integrated single-crystalline structure effectively inhibits particle microcracking and surface phase transformation.In contrast,the PC-NM95 cathode suffers from rapid capacity fading owing to the nucleation and propagation of intergranular microcracking during cycling,facilitating aggravated parasitic reactions and rocksalt phase accumulation.This work provides a fundamental strategy for designing high-performance singlecrystalline,Co-free,Ni-rich cathode materials and also represents an important breakthrough in developing high-safe,low-cost,and high-energy LIBs.
基金supported the National Natural Science Foundation of China(No.62101296)the Natural Science Foundation of Shaanxi Province(Nos.2021JQ-760 and 2021JQ-756).
文摘"Rocking chair"type lithium-ion batteries with lithium metal-free anodes have been successfully com-mercialized over the past few decades.Zinc-ion batteries(zIBs)have gained increasing attention in recent years given their safety,greenness,ease of manufacture,and cost-efficiency.Nevertheless,the practical application of ZIBs is largely hindered by the dendritic growth of the Zn metal anode,low Coulombic eficiency,great harm,and existence of various side reactions.Herein,this review provides a systematic overview of emerging"rocking chair"type ZIBs with zinc metal-free anodes.Firstly,the basic fundamen-tals,advantages,and challenges of“rocking chair”type ZIBs are introduced.Subsequently,an overview of the design principles and recent progress of"rocking chair"type ZIBs with zinc metal-free anodes are presented.Finally,the key challenges and perspectives for future advancement of"rocking chair"type ZiBs with zinc metal-free anodes are proposed.This review is anticipated to attracted increased focus to metal-free anodes"rocking chair"type metal-ion battery and provide new inspirations for the develop-ment of high-energy metal-ion batteries.
基金supported by the National Natural Science Foundation of China(NSFC)Grants 12174001 and 51872001(C.Wang)NSFC Grant 12104001Anhui Provincial Natural Science Foundation of Grant 2008085QE205(F.Li).
文摘In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,and energy storage properties were performed.The NNBT-0.25CLT ceramic with orthorhombic phase at room temperature was found to exhibit extremely small grain size and compacted microstructure.A large Wrec of 3.1 J/cm^(3) and a highηof 91.5%under the electric field of 360 kV/cm were achieved simultaneously in the sample.In addition,the energy storage performance of the sample exhibits thermal stability over the temperature range of 25-140°C and the frequency range of 5-500 Hz.The charge and discharge tests reveal that the ceramic shows a large current density CD of 965 A/cm2 and power density PD of 154 MW/cm^(3).This work demonstrates that the NNBT-0.25CLT ceramic is a prospective energy storage material for potential application in the field of pulsed power devices.
基金supported financially by the National Key Research and Development Program of China (No. 2017YFA0204800)National Natural Science Foundation of China (Nos. 22175079 and 21875093)+1 种基金Natural Science Foundation of Jiangxi Province (Nos. 20204BCJ22015 and 20202ACBL203001)Jiangxi Provincial Department of Education Science and Technology Research Project (No. GJJ210812)。
文摘Ferroelastic materials with switchable spontaneous strain possess widely potential applications in the field of energy and information conversion.Recently,organic-inorganic hybrid halide double perovskites (OIHHDPs) have become a charming new platform for developing various functional materials,such as ferroelectrics,fluorescence and X–ray detection.Nevertheless,OIHHDP ferroelastic materials,especially high-temperature ones,are rare.Herein,we initially synthesized an OIHHDP ferroelastic,(2,2-difluoroethanamine)_(2)[(NH_(4))InCl_6](1),which possesses a ferroelastic phase transition at 407 K.Moreover,thanks to the flexible B-site for OIHHDPs,we replaced the NH_(4)^(+) ions within[(NH_(4))InCl_6]_n^(2n–)formworks with K^(+)ions,which endows with coordination bonds between 2,2-difluoroethanamine organic cations and[KInCl_6]_n^(2n–)formworks.Due to the existence of coordination bonds,the phase transition temperature of (2,2-difluoroethanamine)_(2)[KInCl_6](2) can reach 458 K.As far as we know,this value is the highest reported in OIHHDP ferroelastics.This work offers inspiration for the design of high-temperature OIHHDP phase transition materials including ferroelectrics and ferroelastics.
基金supported by the National Natural Science Foundation of China (No. 21991141)Zhejiang Normal University。
文摘The layered heterometallic halide perovskites, as a newly explored material, have attracted great scientific attention. As one of the representatives of perovskite, lead-free or lead-substituted perovskite materials are widely applied in photovoltaic, sensors, catalysis, detectors and other fields. Therefore, it is urgent to carry out more systematic exploration and expand applicable preresearch, so as to make more interesting discoveries in this new hot spot. As an interesting candidate, heterometallic compounds will introduce more structural adjustability and novel physical properties, which is the main feature to be selected as the research hotspot. Here, we reported a lead-free bilayer heterometallic Ruddlesden-Popper(RP) type perovskite, [(MACH)_(2)CsAgBiBr_(7)](MACH = cyclohexanemethylamine), which possesses a reversible phase transition at 379.6 K/375.1 K during heating-cooling cycle. Besides, it exhibits reddish-brown light emission under 365 nm, meanwhile, CIE chromaticity coordinate is(0.32, 0.45) on the yellow side and correlated color temperature is about 6000 K. Moreover, both the experimental data and theoretical calculation results suggest that [(MACH)_(2)CsAgBiBr_(7)] shows indirect semiconducting characteristics. In summary, this work will inspire the design of lead-free heterometallic perovskite materials for the application of sensors and light-emitting diodes(LEDs) fields.
基金Korea Institute of Industrial Technology,Grant/Award Number:KITECH EO‐22‐0005National Research Foundation of Korea,Grant/Award Numbers:2022R1A3B1078163,2022R1A4A1031182,2022R1A2C2005701。
文摘Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performance and protect the MoO_(x)in acidic media.A thin film of graphene is transferred onto the MoO_(x)layer,after which the graphene structure is doped with N and S atoms at room temperature using a plasma doping method to modify the electronic structure and intrinsic properties of the material.The oxygen functional groups in graphene increase the interfacial interactions and electrical contacts between graphene and MoO_(x).The appearance of surface defects such as oxygen vacancies can result in vacancies in MoO_(x).This improves the electrical conductivity and electrochemically accessible surface area.Increasing the number of defects in graphene by adding dopants can significantly affect the chemical reaction at the interfaces and improve the electrochemical performance.These defects in graphene play a crucial role in the adsorption of H^(+)ions on the graphene surface and their transport to the MoO_(x)layer underneath.This enables MoO_(x)to participate in the reaction with the doped graphene.N^(‐)and S^(‐)doped graphene(NSGr)on MoO_(x)is active in acidic media and performs well in terms of hydrogen production.The initial overpotential value of 359 mV for the current density of−10 mA/cm^(2)is lowered to 228 mV after activation.
基金supported by the National Natural Science Foundation of China(Nos.22175082,91856114 and 21703033).
文摘Chiral organic-inorganic metal halide semiconductors(OIMHSs)have recently attracted numerous interests due to their unique chirality,structural tunability,and extensive physical properties.However,most reported chiral OIMHSs contain toxic lead,which will be a potential obstacle to their further applications.Herein,we successfully synthesized a novel chiral lead-free tin(IV)-based OIMHS[(R)-3-hydroxyquinuclidinium]_(2)SnCl_(6)([R-HQ]_(2)SnCl_(6)).It exhibits a wide band gap(Eg)of about 4.11 eV.Moreover,[R-HQ]_(2)SnCl6 undergoes a phase transition around 330 K(Tc)and shows distinct dielectric switching characteristics with good repeatability.This work enriches the chiral lead-free OIMHS family and stimulates further exploration of chiral lead-free OIMHS switching materials.
基金supported by the National Basic Research Program of China (973) (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant No 70671008)
文摘This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.