The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established ...The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation, the irregularity of the kernel of integral equations is avoided.Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The who...At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load.展开更多
In present study, free vibration of cracked beams resting on two-parameter elastic foundation with elastically restrained ends is considered. Euler-Bemoulli beam hypothesis has been applied and translational and rotat...In present study, free vibration of cracked beams resting on two-parameter elastic foundation with elastically restrained ends is considered. Euler-Bemoulli beam hypothesis has been applied and translational and rotational elastic springs in each end considered as support. The crack is modeled as a mass-less rotational spring which divides beam into two segments. After governing the equations of motion, the differential transform method (DTM) has been served to determine dimensionless frequencies and normalized mode shapes. DTM is a semi-analytical approach based on Taylor expansion series that converts differential equations to recursive algebraic equations. The DTM results for the natural frequencies in special cases are in very good agreement with results reported by well-known references. Also, the DTM procedure yields rapid convergence beside high accuracy without any frequency missing. Comprehensive studies to analyze the effects of crack location, crack severity, parameters of elastic foundation and boundary conditions on dimensionless frequencies as well as effects of elastic boundary conditions on cracked beams mode shapes are carried out and some problems handled for first time in this paper. Since this paper deals with general problem, the derived formulation has capability for analyzing free vibration of cracked beam with every boundary condition.展开更多
Differential equations of free/forced vibrations of n_step one_way thin rectangular plates subjected to in_plane tensile/compressive force in y_direction on Winkler's foundation are established by using singular f...Differential equations of free/forced vibrations of n_step one_way thin rectangular plates subjected to in_plane tensile/compressive force in y_direction on Winkler's foundation are established by using singular functions, their general solutions solved for, expression of vibration mode function and frequency equation on usual supports derived with W operator. Influence functions for various cases deduced here may also be used to solve problems of static buckling or stability for beams and plates in relevant circumstances.展开更多
Differential equations of free forced vibrations of one -way rectangular stepped thin plated on Winkler 's foundation are established by using singular functions ,their general solutions are solved :exprssion of ...Differential equations of free forced vibrations of one -way rectangular stepped thin plated on Winkler 's foundation are established by using singular functions ,their general solutions are solved :exprssion of vibration mode function and frequency equations on usual supports are derived from W operator :forced responses of such plates under different -type loads are discussed with generalized functions .展开更多
The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equa...The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.展开更多
Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expressi...Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expression of vibration mode function and frequency equations on usual suppo rts derived with W operator, as well as forced responses of such plates unde r different_type loads disc ussed with Fourier expansion of generalized functions.展开更多
基金supported by Foundation of MOE Key Laboratory of Disaster Forecast and Control in Engineering
文摘The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation, the irregularity of the kernel of integral equations is avoided.Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
文摘At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load.
文摘In present study, free vibration of cracked beams resting on two-parameter elastic foundation with elastically restrained ends is considered. Euler-Bemoulli beam hypothesis has been applied and translational and rotational elastic springs in each end considered as support. The crack is modeled as a mass-less rotational spring which divides beam into two segments. After governing the equations of motion, the differential transform method (DTM) has been served to determine dimensionless frequencies and normalized mode shapes. DTM is a semi-analytical approach based on Taylor expansion series that converts differential equations to recursive algebraic equations. The DTM results for the natural frequencies in special cases are in very good agreement with results reported by well-known references. Also, the DTM procedure yields rapid convergence beside high accuracy without any frequency missing. Comprehensive studies to analyze the effects of crack location, crack severity, parameters of elastic foundation and boundary conditions on dimensionless frequencies as well as effects of elastic boundary conditions on cracked beams mode shapes are carried out and some problems handled for first time in this paper. Since this paper deals with general problem, the derived formulation has capability for analyzing free vibration of cracked beam with every boundary condition.
文摘Differential equations of free/forced vibrations of n_step one_way thin rectangular plates subjected to in_plane tensile/compressive force in y_direction on Winkler's foundation are established by using singular functions, their general solutions solved for, expression of vibration mode function and frequency equation on usual supports derived with W operator. Influence functions for various cases deduced here may also be used to solve problems of static buckling or stability for beams and plates in relevant circumstances.
文摘Differential equations of free forced vibrations of one -way rectangular stepped thin plated on Winkler 's foundation are established by using singular functions ,their general solutions are solved :exprssion of vibration mode function and frequency equations on usual supports are derived from W operator :forced responses of such plates under different -type loads are discussed with generalized functions .
文摘The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.
文摘Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expression of vibration mode function and frequency equations on usual suppo rts derived with W operator, as well as forced responses of such plates unde r different_type loads disc ussed with Fourier expansion of generalized functions.