We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in p...We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in particular, its significance and importance in the approach of the algebraic Reynolds stress modelling, such as in a nonlinear K-ε model. To this end and for illustration of the effect of extended intrinsic spin tensor on turbulence modelling, we examine several recently developed nonlinear K-ε models and compare their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with LES data. Our results and analysis indicate that, only if the deficiencies of these models and the like be well understood and properly corrected, may in the near future, more sophisticated nonlinear K-ε models be developed to better predict complex turbulent flows in a non-inertial frame of reference.展开更多
针对新一代多用途视频编码(versatile video coding,VVC)标准相比上一代高效视频编码(high efficiency video coding,HEVC)采用了更多数目的时空预测模式,为相邻编码帧带来了更强的帧间相关性的问题,基于深度增强学习方法提出了一种适用...针对新一代多用途视频编码(versatile video coding,VVC)标准相比上一代高效视频编码(high efficiency video coding,HEVC)采用了更多数目的时空预测模式,为相邻编码帧带来了更强的帧间相关性的问题,基于深度增强学习方法提出了一种适用于VVC编码器的码率控制算法。首先选择合适的模型输入信息,包括帧间相关信息、分层编码结构信息和视频内容信息等;其次利用上述信息,结合长短期记忆(long short-term memory,LSTM)神经网络和增强学习方法,构建基于深度增强学习的帧间量化参数预测模型,以优化VVC编码器的码率控制过程;最后验证所提出算法的性能,将所提出算法在VTM 5.1平台实现,并与VVC源编码器进行性能对比。测试结果表明,在相同码率条件下,所提出算法相比于VVC源编码器,实现了BDBR平均节省1.81%和BDPSNR提升0.14 dB。展开更多
文摘We investigate the role of extended intrinsic mean spin tensor introduced in this work for turbulence modelling in a non-inertial frame of reference. It is described by the Euclidean group of transformations and, in particular, its significance and importance in the approach of the algebraic Reynolds stress modelling, such as in a nonlinear K-ε model. To this end and for illustration of the effect of extended intrinsic spin tensor on turbulence modelling, we examine several recently developed nonlinear K-ε models and compare their performance in predicting the homogeneous turbulent shear flow in a rotating frame of reference with LES data. Our results and analysis indicate that, only if the deficiencies of these models and the like be well understood and properly corrected, may in the near future, more sophisticated nonlinear K-ε models be developed to better predict complex turbulent flows in a non-inertial frame of reference.
文摘针对新一代多用途视频编码(versatile video coding,VVC)标准相比上一代高效视频编码(high efficiency video coding,HEVC)采用了更多数目的时空预测模式,为相邻编码帧带来了更强的帧间相关性的问题,基于深度增强学习方法提出了一种适用于VVC编码器的码率控制算法。首先选择合适的模型输入信息,包括帧间相关信息、分层编码结构信息和视频内容信息等;其次利用上述信息,结合长短期记忆(long short-term memory,LSTM)神经网络和增强学习方法,构建基于深度增强学习的帧间量化参数预测模型,以优化VVC编码器的码率控制过程;最后验证所提出算法的性能,将所提出算法在VTM 5.1平台实现,并与VVC源编码器进行性能对比。测试结果表明,在相同码率条件下,所提出算法相比于VVC源编码器,实现了BDBR平均节省1.81%和BDPSNR提升0.14 dB。