针对森林这样的大空间、复杂场景下的火灾检测,提出一种在单帧视频序列图像中的烟检测方法,并研究一种新的超像素合并算法,改进现有的天地线检测算法。该方法对图像进行SLIC(Simple Linear Iterative Clustering)超像素分割,并用一种新...针对森林这样的大空间、复杂场景下的火灾检测,提出一种在单帧视频序列图像中的烟检测方法,并研究一种新的超像素合并算法,改进现有的天地线检测算法。该方法对图像进行SLIC(Simple Linear Iterative Clustering)超像素分割,并用一种新的超像素合并算法解决过分割问题;通过改进的天地线分割算法,排除天空中云对于烟检测的干扰;根据光谱特征,运用支持向量机(SVM)对超像素块进行分类。实验结果表明,超像素合并算法高效简洁,易于编程实现,基于图像分割的烟检测技术能排除云雾等噪声对烟雾检测的干扰,在森林场景下的烟雾检测正确率为77%,可以作为人工森林火灾监测的辅助手段。展开更多
A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequenc...A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.展开更多
文摘针对森林这样的大空间、复杂场景下的火灾检测,提出一种在单帧视频序列图像中的烟检测方法,并研究一种新的超像素合并算法,改进现有的天地线检测算法。该方法对图像进行SLIC(Simple Linear Iterative Clustering)超像素分割,并用一种新的超像素合并算法解决过分割问题;通过改进的天地线分割算法,排除天空中云对于烟检测的干扰;根据光谱特征,运用支持向量机(SVM)对超像素块进行分类。实验结果表明,超像素合并算法高效简洁,易于编程实现,基于图像分割的烟检测技术能排除云雾等噪声对烟雾检测的干扰,在森林场景下的烟雾检测正确率为77%,可以作为人工森林火灾监测的辅助手段。
文摘A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.