The paper reports on the observation of nanoscale morphology on the tensile fracture surface of a brittle amorphous Fe-based ribbon. The formation of nanoscale damage cavity structure is a main characteristic morpholo...The paper reports on the observation of nanoscale morphology on the tensile fracture surface of a brittle amorphous Fe-based ribbon. The formation of nanoscale damage cavity structure is a main characteristic morphology on the fracture surfaces. Approaching the ribbon boundary, these damage cavities assemble and form the nanoscale periodic corrugations, which are neither Wallner lines nor crack front waves. The periodic corrugations result from the interactions between the reflected elastic waves by the boundaries of amorphous ribbon and the stress fields of the crack tip.展开更多
In the present work, the glass formation of Zr59Nb5Cu18Ni8Al10 (numbers indicate at %) alloy with diameter of 2 mm was prepared through water-cooled copper mold casting and in a ribbon form by the single roller melt-s...In the present work, the glass formation of Zr59Nb5Cu18Ni8Al10 (numbers indicate at %) alloy with diameter of 2 mm was prepared through water-cooled copper mold casting and in a ribbon form by the single roller melt-spinning method. This study is primarily devoted to evaluating the results obtained with the two methods of the development. The thermal stability was evaluated by differential scanning calorimetry (DSC) at a heating rate of 10℃/mn. The characteristic data of the bulk metallic glass are presented, including glass transition temperature (Tg) and crystallization temperature (Tx). The microstructure and constituent phases of the alloy composite have been analyzed by using X-ray diffraction, and observed by Scanning Electron Microscopy (SEM). The mechanical properties of bulk Zr59Nb5Cu18Ni8Al10 were alloy measured by compression tests at room temperature.展开更多
文摘The paper reports on the observation of nanoscale morphology on the tensile fracture surface of a brittle amorphous Fe-based ribbon. The formation of nanoscale damage cavity structure is a main characteristic morphology on the fracture surfaces. Approaching the ribbon boundary, these damage cavities assemble and form the nanoscale periodic corrugations, which are neither Wallner lines nor crack front waves. The periodic corrugations result from the interactions between the reflected elastic waves by the boundaries of amorphous ribbon and the stress fields of the crack tip.
文摘In the present work, the glass formation of Zr59Nb5Cu18Ni8Al10 (numbers indicate at %) alloy with diameter of 2 mm was prepared through water-cooled copper mold casting and in a ribbon form by the single roller melt-spinning method. This study is primarily devoted to evaluating the results obtained with the two methods of the development. The thermal stability was evaluated by differential scanning calorimetry (DSC) at a heating rate of 10℃/mn. The characteristic data of the bulk metallic glass are presented, including glass transition temperature (Tg) and crystallization temperature (Tx). The microstructure and constituent phases of the alloy composite have been analyzed by using X-ray diffraction, and observed by Scanning Electron Microscopy (SEM). The mechanical properties of bulk Zr59Nb5Cu18Ni8Al10 were alloy measured by compression tests at room temperature.