In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The low...In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied.展开更多
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded...We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.展开更多
In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the intera...In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.展开更多
This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then in...This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60404005).
文摘In this paper we numerically investigate the chaotic behaviours of the fractional-order Ikeda delay system. The results show that chaos exists in the fractional-order Ikeda delay system with order less than 1. The lowest order for chaos to be a, ble to appear in this system is found to be 0.1. Master-slave synchronization of chaotic fractional-order Ikeda delay systems with linear coupling is also studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundation (Grant No. 20100481293)the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037)
文摘We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
基金supported by the National Natural Science Foundation of China(61303211)Zhejiang Provincial Natural Science Foundation of China(LY17F030003,LY15F030009)
文摘In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.
文摘This paper introduces a new four-dimensional (4D) hyperchaotic system, which has only two quadratic nonlinearity parameters but with a complex topological structure. Some complicated dynamical properties are then investigated in detail by using bifurcations, Poincare mapping, LE spectra. Furthermore, a simple fourth-order electronic circuit is designed for hardware implementation of the 4D hyperchaotic attractors. In particular, a remarkable fractional-order circuit diagram is designed for physically verifying the hyperchaotic attractors existing not only in the integer-order system but also in the fractional-order system with an order as low as 3.6.