期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用分数阶(G′G)展式法构造分数阶KdV-Burger方程方程的精确行波解 被引量:1
1
作者 尹伟石 李琰 徐飞 《长春理工大学学报(自然科学版)》 2016年第6期125-128,共4页
(G′G)展式法是一种行之有效的求解分数阶偏微分方程的方法.利用行波变化与齐次平衡技巧可以对该方法进行拓展,拓展后的方法能够处理更一般的分数阶偏微分方程.最后将拓展后的方法应用到基于黎曼-刘维尔积分意义下的时间空间分数阶KdV-B... (G′G)展式法是一种行之有效的求解分数阶偏微分方程的方法.利用行波变化与齐次平衡技巧可以对该方法进行拓展,拓展后的方法能够处理更一般的分数阶偏微分方程.最后将拓展后的方法应用到基于黎曼-刘维尔积分意义下的时间空间分数阶KdV-Burger方程中,通过符号计算可以得到方程的精确行波解。与其他方法相比,拓展的(G′G)展式法不需要进行变换和数值逼近,计算更加的简洁。 展开更多
关键词 分数阶(G′G)展式法 分数阶kdv-burger方程 精确行波解
下载PDF
Application of the Improved Kudryashov Method to Solve the Fractional Nonlinear Partial Differential Equations 被引量:2
2
作者 Md. Abdus Salam Umme Habiba 《Journal of Applied Mathematics and Physics》 2019年第4期912-920,共9页
Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Bur... Our purpose of this paper is to apply the improved Kudryashov method for solving various types of nonlinear fractional partial differential equations. As an application, the time-space fractional Korteweg-de Vries-Burger (KdV-Burger) equation is solved using this method and we get some new travelling wave solutions. To acquire our purpose a complex transformation has been also used to reduce nonlinear fractional partial differential equations to nonlinear ordinary differential equations of integer order, in the sense of the Jumarie’s modified Riemann-Liouville derivative. Afterwards, the improved Kudryashov method is implemented and we get our required reliable solutions where the results are justified by mathematical software Maple-13. 展开更多
关键词 IMPROVED Kudryashov METHOD Time-Space fractional kdv-burger equation TRAVELLING Wave Solutions Jumarie’s Modified Riemann-Liouville Derivative
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部