Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagra...Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.展开更多
The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is nece...The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.展开更多
基金supported by the National Natural Science Foundation of China (Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(No.KYLX15_0405)
文摘Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.
基金Supported by the National Natural Science Foundation of China(10972151,11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(CXZZ11_0949)the Innovation Program for Postgraduate of Suzhou University of Science and Technology(SKCX11S_050)
文摘The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.