The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of th...The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of the solutions to such problems are often designed for their unique circumstances.This paper puts forward a new global optimization algorithm for solving the problem MIQCQFP.We first convert the MIQCQFP into an equivalent generalized bilinear fractional programming(EIGBFP)problem with integer variables.Secondly,we linearly underestimate and linearly overestimate the quadratic functions in the numerator and the denominator respectively,and then give a linear fractional relaxation technique for EIGBFP on the basis of non-negative numerator.After that,combining rectangular adjustment-segmentation technique and midpointsampling strategy with the branch-and-bound procedure,an efficient algorithm for solving MIQCQFP globally is proposed.Finally,a series of test problems are given to illustrate the effectiveness,feasibility and other performance of this algorithm.展开更多
The definitions and properties of widely used fractional-order derivatives are summarized in this paper.The characteristic polynomials of the fractional-order systems are pseudo-polynomials whose powers of the complex...The definitions and properties of widely used fractional-order derivatives are summarized in this paper.The characteristic polynomials of the fractional-order systems are pseudo-polynomials whose powers of the complex variable are non-integers.This kind of systems can be approximated by high-order integer-order systems,and can be analyzed and designed by the sophisticated integer-order systems methodology.A new closed-form algorithm for fractional-order linear differential equations is proposed based on the definitions of fractional-order derivatives,and the effectiveness of the algorithm is illustrated through examples.展开更多
In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time sca...In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time scales is presented. Discrete fractional Birkhoff equations with left and right discrete operators of Riemann-Liouville type are established and some special cases including classical discrete Birkhoff equations,discrete fractional Hamilton equations and discrete fractional Lagrange equations are discussed. Finally,an example is devoted to illustrate the results.展开更多
The special issue presents new mathematical and computational approaches,to investigate some core problems of the computational biological sciences.This topic presents a huge interest from both theoretical and applied...The special issue presents new mathematical and computational approaches,to investigate some core problems of the computational biological sciences.This topic presents a huge interest from both theoretical and applied viewpoints.The content of this special issue was focused mainly to debate a wide range of the theory and applications of integer-order and fractional-order derivatives and fractional-order integrals in different directions of mathematical biology.Several interdisciplinary groups reported their related results.展开更多
基金supported by the National Natural Science Foundation of China(Grant 11961001)the construction project of first-class subjects in Ningxia Higher Education(Grant NXYLXK2017B09)by the major proprietary funded project of North Minzu University(Grant ZDZX201901).
文摘The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of the solutions to such problems are often designed for their unique circumstances.This paper puts forward a new global optimization algorithm for solving the problem MIQCQFP.We first convert the MIQCQFP into an equivalent generalized bilinear fractional programming(EIGBFP)problem with integer variables.Secondly,we linearly underestimate and linearly overestimate the quadratic functions in the numerator and the denominator respectively,and then give a linear fractional relaxation technique for EIGBFP on the basis of non-negative numerator.After that,combining rectangular adjustment-segmentation technique and midpointsampling strategy with the branch-and-bound procedure,an efficient algorithm for solving MIQCQFP globally is proposed.Finally,a series of test problems are given to illustrate the effectiveness,feasibility and other performance of this algorithm.
基金supported by the National Natural Science Foundation of China (Grant No.60475036).
文摘The definitions and properties of widely used fractional-order derivatives are summarized in this paper.The characteristic polynomials of the fractional-order systems are pseudo-polynomials whose powers of the complex variable are non-integers.This kind of systems can be approximated by high-order integer-order systems,and can be analyzed and designed by the sophisticated integer-order systems methodology.A new closed-form algorithm for fractional-order linear differential equations is proposed based on the definitions of fractional-order derivatives,and the effectiveness of the algorithm is illustrated through examples.
基金National Natural Science Foundations of China(Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time scales is presented. Discrete fractional Birkhoff equations with left and right discrete operators of Riemann-Liouville type are established and some special cases including classical discrete Birkhoff equations,discrete fractional Hamilton equations and discrete fractional Lagrange equations are discussed. Finally,an example is devoted to illustrate the results.
文摘The special issue presents new mathematical and computational approaches,to investigate some core problems of the computational biological sciences.This topic presents a huge interest from both theoretical and applied viewpoints.The content of this special issue was focused mainly to debate a wide range of the theory and applications of integer-order and fractional-order derivatives and fractional-order integrals in different directions of mathematical biology.Several interdisciplinary groups reported their related results.