This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence ...This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence degree theory.展开更多
This paper deals with a four-point boundary value problem [φ(u')]' = f(t, u, u'),a < t < b with u(a) - u(ao) = A, u(b) - u(bo) = B, where a < a0 <b0 < b.
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
文摘This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence degree theory.
文摘This paper deals with a four-point boundary value problem [φ(u')]' = f(t, u, u'),a < t < b with u(a) - u(ao) = A, u(b) - u(bo) = B, where a < a0 <b0 < b.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.