A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the re...A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the received light spot size and its motion with the changes of the defocusing amount of detector photosensitive surface and the detector position attitude in the optical path, a mathematic expression of photoelectrical conversion is given, which can be applicable to random setting position of the detector at any time. Based on least square support vector machine (LS SVM), the mapping relationship among the output signal linear characteristic parameters (zero neighborhood gradient and intercept), the defocusing amount of the detector and the installation position attitude angle is established. Thus, the multiple dimensional high accuracy measuring and adjusting control system can be left out, and adaptive measurement of the detector parameters can be realized. Compared with existed measurement model and method, the presented model has the advantages of more clear physical meaning, closer to work mechanism of detector, acquiring more complete sample data and wiping out the dead spots or bad spots in measurement. And the accuracy of displacement measurement is increased to 3?μm. At the same time, this measurement mode provides a technical shortcut for three-dimensional small angle measurement.展开更多
文摘A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the received light spot size and its motion with the changes of the defocusing amount of detector photosensitive surface and the detector position attitude in the optical path, a mathematic expression of photoelectrical conversion is given, which can be applicable to random setting position of the detector at any time. Based on least square support vector machine (LS SVM), the mapping relationship among the output signal linear characteristic parameters (zero neighborhood gradient and intercept), the defocusing amount of the detector and the installation position attitude angle is established. Thus, the multiple dimensional high accuracy measuring and adjusting control system can be left out, and adaptive measurement of the detector parameters can be realized. Compared with existed measurement model and method, the presented model has the advantages of more clear physical meaning, closer to work mechanism of detector, acquiring more complete sample data and wiping out the dead spots or bad spots in measurement. And the accuracy of displacement measurement is increased to 3?μm. At the same time, this measurement mode provides a technical shortcut for three-dimensional small angle measurement.