The method combining the function transformation with the auxiliary equation is presented and the new infinite sequence complexion solutions of a class of nonlinear evolutionary equations are constructed. Step one, ac...The method combining the function transformation with the auxiliary equation is presented and the new infinite sequence complexion solutions of a class of nonlinear evolutionary equations are constructed. Step one, according to two function transformations, a class of nonlinear evolutionary equations is changed into two kinds of ordinary differential equations. Step two, using the first integral of the ordinary differential equations, two first order nonlinear ordinary differential equations are obtained. Step three, using function transformation, two first order nonlinear ordinary differential equations are changed to the ordinary differential equation that could be integrated. Step four, the new solutions, B?cklund transformation and the nonlinear superposition formula of solutions of the ordinary differential equation that could be integrated are applied to construct the new infinite sequence complexion solutions of a class of nonlinear evolutionary equations. These solutions are consisting of two-soliton solutions, two-period solutions and solutions composed of soliton solutions and period solutions.展开更多
In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ...In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.展开更多
文摘The method combining the function transformation with the auxiliary equation is presented and the new infinite sequence complexion solutions of a class of nonlinear evolutionary equations are constructed. Step one, according to two function transformations, a class of nonlinear evolutionary equations is changed into two kinds of ordinary differential equations. Step two, using the first integral of the ordinary differential equations, two first order nonlinear ordinary differential equations are obtained. Step three, using function transformation, two first order nonlinear ordinary differential equations are changed to the ordinary differential equation that could be integrated. Step four, the new solutions, B?cklund transformation and the nonlinear superposition formula of solutions of the ordinary differential equation that could be integrated are applied to construct the new infinite sequence complexion solutions of a class of nonlinear evolutionary equations. These solutions are consisting of two-soliton solutions, two-period solutions and solutions composed of soliton solutions and period solutions.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278)
文摘In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.