The average mass concentration of the aerosols in Beijing during the dust storm in the spring of 2000 was -6000 μg · m-3, -30 times as high as that in the non-dust storm days. The enrichment factors of the pollu...The average mass concentration of the aerosols in Beijing during the dust storm in the spring of 2000 was -6000 μg · m-3, -30 times as high as that in the non-dust storm days. The enrichment factors of the pollution elements As, Sb and Se were higher than those in the non-dust storm days. This indicated that As, Sb and Se resulted from the pollution sources of those areas, through which the dust storm passed during their long-range transport, in addition to the local pollution sources in Beijing. The enrichment factors of the Pb, Zn, Cd and Cu were much less than those in the non-dust storm days, suggesting that the local pollution sources in Beijing area contributed to them mostly. The enrichment factors of elements Al, Fe, Sc, Mn, Na, Ni, Cr, V and Co were close to 1, showing that these elements originated from crust. The concentration of S in the dust storm was -10 μg · m-3,4 times as high as that in non-dust storm. S in the aerosols resulted from the adsorption of gaseous SO2 and the consequent展开更多
Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertil...Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertilizer industry, was used to drive the alkaline transformation of the bauxite residue. Under optimal water washing conditions(liquid/solid ratio of 2 mL/g, 30°C, 24 hr), the impact of quantity added, reaction time and reaction mechanism during phosphogypsum application were investigated. Phosphogypsum addition effectively lowered p H levels and reduced the soluble alkalinity by 92.2%. It was found that the concentration of soluble Na and Ca ions in the supernatant increased gradually, whilst the exchangeable Na+and Ca^(2+)in solid phase changed 112 mg/kg and 259 mg/kg, respectively. Ca^(2+)became the dominant element in the solid phase(phosphogypsum addition of 2%, liquid/solid ratio of 2 mL/g, 30°C, 12 hr). X-ray diffraction data indicated that cancrinite and hydrogarnet were the primary alkaline minerals. SEM images suggested that phosphogypsum could promote the formation of stable macroaggregates, whilst the content of Ca^(2+)increased from 5.6% to 18.2% and Na reduced from 6.8% to 2.4%. Treatment with phosphogypsum could significantly promote the transformation of alkalinity cations by neutralization, precipitation and replacement reactions.This research provided a feasible method to promote soil formation of bauxite residue by phosphogypsum amendment.展开更多
The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing...The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing the formation of LPSO phases, including alloying ele-ments, preparation methods, and heat treatments. Furthermore, process control in structure types, formation and transformation behavior, strengthening and toughening mechanisms of the LPSO phase were discussed. Finally, the current problems and development trends of high-strength Mg-Zn-RE alloys were also put forward.展开更多
文摘The average mass concentration of the aerosols in Beijing during the dust storm in the spring of 2000 was -6000 μg · m-3, -30 times as high as that in the non-dust storm days. The enrichment factors of the pollution elements As, Sb and Se were higher than those in the non-dust storm days. This indicated that As, Sb and Se resulted from the pollution sources of those areas, through which the dust storm passed during their long-range transport, in addition to the local pollution sources in Beijing. The enrichment factors of the Pb, Zn, Cd and Cu were much less than those in the non-dust storm days, suggesting that the local pollution sources in Beijing area contributed to them mostly. The enrichment factors of elements Al, Fe, Sc, Mn, Na, Ni, Cr, V and Co were close to 1, showing that these elements originated from crust. The concentration of S in the dust storm was -10 μg · m-3,4 times as high as that in non-dust storm. S in the aerosols resulted from the adsorption of gaseous SO2 and the consequent
基金supported by the National Natural Science Foundation of China(Nos.41701587 and 41371475)the Environmental Protection's Special Scientific Research for Chinese Public Welfare Industry(No.201509048)
文摘Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertilizer industry, was used to drive the alkaline transformation of the bauxite residue. Under optimal water washing conditions(liquid/solid ratio of 2 mL/g, 30°C, 24 hr), the impact of quantity added, reaction time and reaction mechanism during phosphogypsum application were investigated. Phosphogypsum addition effectively lowered p H levels and reduced the soluble alkalinity by 92.2%. It was found that the concentration of soluble Na and Ca ions in the supernatant increased gradually, whilst the exchangeable Na+and Ca^(2+)in solid phase changed 112 mg/kg and 259 mg/kg, respectively. Ca^(2+)became the dominant element in the solid phase(phosphogypsum addition of 2%, liquid/solid ratio of 2 mL/g, 30°C, 12 hr). X-ray diffraction data indicated that cancrinite and hydrogarnet were the primary alkaline minerals. SEM images suggested that phosphogypsum could promote the formation of stable macroaggregates, whilst the content of Ca^(2+)increased from 5.6% to 18.2% and Na reduced from 6.8% to 2.4%. Treatment with phosphogypsum could significantly promote the transformation of alkalinity cations by neutralization, precipitation and replacement reactions.This research provided a feasible method to promote soil formation of bauxite residue by phosphogypsum amendment.
基金supported by the Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials (No. AMM201007)the Natural Science Foundation of Jiangsu Province of China (No. BK2010521)
文摘The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing the formation of LPSO phases, including alloying ele-ments, preparation methods, and heat treatments. Furthermore, process control in structure types, formation and transformation behavior, strengthening and toughening mechanisms of the LPSO phase were discussed. Finally, the current problems and development trends of high-strength Mg-Zn-RE alloys were also put forward.