在软件定义网络(software defined networking,SDN)中,由于集中管理与可编程的特点,其安全性面临着巨大的挑战。恶意攻击者容易利用SDN网络的安全漏洞进行分布式拒绝服务(distributed denial of service,DDoS)攻击,而对DDoS攻击与闪拥...在软件定义网络(software defined networking,SDN)中,由于集中管理与可编程的特点,其安全性面临着巨大的挑战。恶意攻击者容易利用SDN网络的安全漏洞进行分布式拒绝服务(distributed denial of service,DDoS)攻击,而对DDoS攻击与闪拥事件检测的分析不论是对预防恶意流量还是电子数据取证都至关重要。提出一种SDN中基于流特征的多类型DDoS攻击和闪拥流量检测方法,其中可调节的φ-熵增加不同数据类型间的距离以便在流形成初期及时发现攻击行为。对一些常见的DDoS攻击方式进行详细分析,并通过获取交换机中流表的多维特征对样本进行训练分类,在有效检测DDoS攻击流量的同时还能在一定程度上区分DDoS攻击与闪拥事件。通过Mininet平台进行仿真实验,实验表明,该方法可以有效提高DDoS攻击检测率并降低闪拥事件误报率,验证了实验的准确性和有效性。展开更多
文摘在软件定义网络(software defined networking,SDN)中,由于集中管理与可编程的特点,其安全性面临着巨大的挑战。恶意攻击者容易利用SDN网络的安全漏洞进行分布式拒绝服务(distributed denial of service,DDoS)攻击,而对DDoS攻击与闪拥事件检测的分析不论是对预防恶意流量还是电子数据取证都至关重要。提出一种SDN中基于流特征的多类型DDoS攻击和闪拥流量检测方法,其中可调节的φ-熵增加不同数据类型间的距离以便在流形成初期及时发现攻击行为。对一些常见的DDoS攻击方式进行详细分析,并通过获取交换机中流表的多维特征对样本进行训练分类,在有效检测DDoS攻击流量的同时还能在一定程度上区分DDoS攻击与闪拥事件。通过Mininet平台进行仿真实验,实验表明,该方法可以有效提高DDoS攻击检测率并降低闪拥事件误报率,验证了实验的准确性和有效性。