Global warming has been one of the major concerns behind the world's high-speed economic growth. How to implement the coordinated development of the carbon footprint and the economy will be the core issue of the worl...Global warming has been one of the major concerns behind the world's high-speed economic growth. How to implement the coordinated development of the carbon footprint and the economy will be the core issue of the world's economic and social development, as well as the heated debate of the research at home and abroad in recent years. Based on the energy consumption, integrated with the "Top-Down" life cycle approach and geographically weighted regression (GWR) model, this paper analyzed the spatial differences and multi-mechanism of carbon footprint in provincial China in 2010. Firstly, this study calculated the amount of carbon footprint of each province using "Top-Down" life cycle approach and found that there were significant differences of carbon footprint and per capita carbon footprint in provincial China. The provinces with higher carbon footprint, mainly located in northern China, have large economic scales; the provinces with higher per capita carbon footprint are mainly distributed in central cities such as Beijing, Shanghai and energy-rich regions and heavy chemical bases. Secondly, with the aid of GIS and spatial analysis model (GWR model), this paper had unfolded that the expansion of economic scale is the main driver of the rapid growth of carbon footprint. The growth of population and urbanization also acted as promoting factors for the increase of the carbon footprint. Energy structure had no considerable promoting effect for the increase of the carbon footprint. Improving energy efficiency is the most important factor to inhibit the growing carbon footprint. Thirdly, developing low-carbon economies and low-carbon industries, as well as advocating low-carbon city construction and improving carbon efficiency would be the primary approaches to inhibit the rapid growth of carbon footprint. Moderately controlling the economic scale and population size would also be required to alleviate carbon footprint. Meanwhile, environmental protection and construction of low-carbon cities would 展开更多
This research was to introduce the characteristics of and countermeasures for ecological compensation. From the analysis of the current situation of ecological compensation, a series of characteristics of ecological c...This research was to introduce the characteristics of and countermeasures for ecological compensation. From the analysis of the current situation of ecological compensation, a series of characteristics of ecological compensation in resource exploitation and economic development were elaborated. The principles and practical issues are complex in ecological compensation, and the corresponding object, entity, financial system of ecological compensation are the keys to set up compensation mechanism, and studying of ecosystem service function and ecological footprint calculation are important ways to quantitatively assess ecological compensation, and are also important foundations for establishing calculation system of green GDP. Advocating the benefit compensation mechanism of ecological economy and enclosing ecological compensation principle are important ways for establishing the new environmental management pattern and manifesting social justice and the ecological civilization ideas. This research proposed some views of and approaches to ecological compensation mechanism for constructing natural resource development and utilization.The establishment of ecological compensation is an important approach to prevent the imbalance of resource allocation, the system guarantee for sustainable development, and the important basis of saving resources.展开更多
Using energy consumption and land use data of each region of China in 2007, this paper established carbon emission and carbon footprint model based on energy consumption and estimated the carbon emission amount of fos...Using energy consumption and land use data of each region of China in 2007, this paper established carbon emission and carbon footprint model based on energy consumption and estimated the carbon emission amount of fossil energy and rural biomass energy of dif- ferent regions of China in 2007. Through matching the energy consumption items with industrial spaces, this paper divided industrial spaces into five types: agricultural space, living & industrial-commercial space, transportation industrial space, fishery and water conservancy space, and other industrial space. Then the author analyzed the carbon emission intensity and carbon footprint of each industrial space. Finally, advices of decreasing industrial carbon footprint and optimizing industrial space pattern were put forward. The main conclusions are as following: (1) Total amount of carbon emission from energy consumption of China in 2007 was about 1.65 GtC, in which the proportion of carbon emission from fossil energy was 89%. (2) Carbon emission intensity of industrial space of China in 2007 was 1.98 t/hm^2, in which, carbon emission intensity of living & industrial-commercial space and of transportation industrial space was 55.16 t/hm^2 and 49.65 t/hm^2 respectively, they were high-carbon-emission industrial spaces among others. (3) Carbon footprint caused by industrial activities of China in 2007 was 522.34×10^6 hm^2, which brought about ecological deficit of 28.69×10^6 hm^2, which means that the productive lands were not sufficient to compensate for carbon footprint of industrial activities, and the compensating rate was 94.5%. As to the regional carbon footprint several regions have ecological profit while others have not. In general, the present ecological deficit caused by industrial activities was small in 2007. (4) Per unit area carbon footprint of industrial space in China was about 0.63 hm^2/hm^2 in 2007, in which that of living & industrial-commercial space was the highest (17.5 hm^2/hm^2). The per unit area car展开更多
A balanced ecological carrying capacity and its understanding are important to achieve sustainable development for human kind.Here,the concept of ecological carrying capacity has been used for measuring the dependenci...A balanced ecological carrying capacity and its understanding are important to achieve sustainable development for human kind.Here,the concept of ecological carrying capacity has been used for measuring the dependencies between human and nature.China's ecological balance between supply and demand has become a global concern and is widely debated.In this study the 'Ecological Footprint' method was used to analyze the supply-demand balance of China's ecological carrying capacity.Firstly,the ecological supply and demand balance was calculated and evaluated,and secondly,the ecological carrying capacity index (ECCI) was derived for each county of China in 2007,and finally this paper systematically evaluated the ecological carrying capacity supply-demand balance of China.The results showed that ecological deficit appeared to be the main characteristic of ecological carrying capacity supply-demand balance in 2007 of China at county scale.In general,more than four-fifths of the Chinese population was concentrated in less than one-third of the land area and more than two-thirds of the land area was inhabited by less than one-fifth of the population.The spatial distribution of the ecological carrying capacity demand-supply was unbalanced ranging from significant overloading to affluence from southeastern to northwestern part of China.It appeared to be more dominant in regions located at coastal areas which are attracted by migrants and had a generally higher population density.Along with the rapid development and urbanization trends in China,ecological deficits in these regions will become more severe.展开更多
The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in mee...The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies.展开更多
Abstract This paper presents the novel use of the particle swarm optimization (PSO) to generate the end-to-end trajectory for hypersonic reentry vehicles in a quite simple formulation. The velocity- dependent bank a...Abstract This paper presents the novel use of the particle swarm optimization (PSO) to generate the end-to-end trajectory for hypersonic reentry vehicles in a quite simple formulation. The velocity- dependent bank angle profile is developed to reduce the search space of unknown parameters based on the constrained PSO algorithm. The path constraints are enforced by setting the fitness function to be infinite on condition that the particles violate the maximum allowable values. The PSO algo- rithm also provides a much easier means to satisfy the terminal conditions by adding penalty terms to the fitness function. Furthermore, the approximate reentry landing footprint is fast constructed by incorporating an interpolation model into the standardized bank angle profiles. Numerical sim ulations demonstrate that the PSO method is a feasible and flexible tool to generate the end-to-end trajectory and landing footprint for hypersonic reentry vehicles.展开更多
Study on regional carbon emission is one of the hot topics under the background of global climate change and low-carbon economic development, and also help to establish different low-carbon strategies for different re...Study on regional carbon emission is one of the hot topics under the background of global climate change and low-carbon economic development, and also help to establish different low-carbon strategies for different regions. On the basis of energy consumption and land use data of different regions in China from 1999 to 2008, this paper established carbon emission and carbon footprint models based on total energy consumption, and calculated the amount of carbon emissions and carbon footprint in different regions of China from 1999 to 2008. The author also analyzed carbon emission density and per unit area carbon footprint for each region. Finally, advices for decreasing carbon footprint were put forward. The main conclusions are as follows: (1) Carbon emissions from total energy consumption increased 129% from 1999 to 2008 in China, but its spatial distribution pattern among different regions just slightly changed, the sorting of carbon emission amount was: Eastern China Northern China Central and Southern China Southwest China Northwest China. (2) The sorting of carbon emission density was: Eastern China Northeast China Central and Southern China Northern China Southwest China Northwest China from 1999 to 2003, but from 2004 Central and Southern China began to have higher carbon emission density than Northeast China, the order of other regions did not change. (3) Carbon footprint increased significantly since the rapid increasing of carbon emissions and less increasing area of pro-ductive land in different regions of China from 1999 to 2008. Northern China had the largest carbon footprint, and Northwest China, Eastern China, Northern China, Central and Southern China followed in turn, while Southwest China presented the lowest area of carbon footprint and the highest percentage of carbon absorption. (4) Mainly influenced by regional land area, Northern China presented the highest per unit area carbon footprint and followed by Eastern China, and Northeast China; Central and Southern China, and展开更多
Human-environment relationship is a focus of academic researches and an understanding of the rela- tionship is important for making effective policies and decisions. In this study, based on rural household survey data...Human-environment relationship is a focus of academic researches and an understanding of the rela- tionship is important for making effective policies and decisions. In this study, based on rural household survey data of Taibus Banner, Duolun county and Zhengxiangbai Banner in the Inner Mongolia autonomous region of China, we identified the impact of livelihood diversification on ecosystems in these agro-pastoral areas by using the ecological footprint theory and methodology together with the one-way analysis of variance (ANOVA) and correlation analysis methods. In 2011, the total ecological footprint of consumption (EFC) was 0.665 g hm2, and the total ecological footprint of production (EFP) was 2.045 g hm2, which was more than three times the EFC. The ecological footprint of arable land consumption (EFAC) accounted for a large proportion of the EFC, and the ecological footprint of grassland production (EFGP) occupied a large proportion of the EFP. Both the ecological footprint of grassland consumption (EFGC) and EFGP had a significant positive correlation with the income, indicating that income was mainly depended on livestock production and the households with higher incomes consumed more livestock prod- ucts. The full-time farming households (FTFHs) had the highest EFP, ecological footprint of arable land production (EFAP), EFGP and EFGC, followed by the part-time farming households (PTFHs) and non-farming households (NFHs), which indicated that part-time farming and non-farming employment reduced the occupancy and con- sumption of rural households on local ecosystems and natural resources to some extent. When farming households engaged in livestock rearing, both the EFAP and EFAC became smaller, while the EFP, EFC, EFGC and EFGP increased significantly. The differences in ecological footprints among different household groups should be taken into account when making ecosystem conservation policies. Encouraging the laborers who have the advantages of participating in no展开更多
Based on the theory of emergy analysis,a modified model of ecological footprint accounting,termed emergetic ecological footprint(EMEF)in contrast to the conventional ecological footprint(EF)model,is formulated and app...Based on the theory of emergy analysis,a modified model of ecological footprint accounting,termed emergetic ecological footprint(EMEF)in contrast to the conventional ecological footprint(EF)model,is formulated and applied to a case study of Jiangsu cropland,China.Comparisons between the EF and the EMEF with respect to grain,cotton,and food oil were outlined.Per capita EF and EMEF of cropland were also presented to depict the resources consumption level by comparing the biocapacity(BC)or emergetic biocapacity(EMBC,a new BC calculation by emergy analysis) of the same area.In the meanwhile,the ecological sustainability index(ESI),a new concept initiated by the authors, was established in the modified model to indicate and compare the sustainability of cropland use at different levels and between different regions.The results from conventional EF showed that per capita EF of the cropland has exceeded its per capita BC in Jiangsu since 1986.In contrast,based on the EMBC,the per capita EMEF exceeded the per capita EMBC 5 years earlier.The ESIs of Jiangsu cropland use were between 0.7 and 0.4 by the conventional method,while the numbers were between 0.7 and 0.3 by the modified one.The fact that the results of the two methods were similar showed that the modified model was reasonable and feasible,although some principles of the EF and EMEF were quite different. Also,according to the realities of Jiangsu cropland use,the results from the modified model were more acceptable.展开更多
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of t...The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in c展开更多
基金National Natural Science Foundation of China, No.41371177 Major Program of National Social Science Foundation of China, No. 13&ZD027
文摘Global warming has been one of the major concerns behind the world's high-speed economic growth. How to implement the coordinated development of the carbon footprint and the economy will be the core issue of the world's economic and social development, as well as the heated debate of the research at home and abroad in recent years. Based on the energy consumption, integrated with the "Top-Down" life cycle approach and geographically weighted regression (GWR) model, this paper analyzed the spatial differences and multi-mechanism of carbon footprint in provincial China in 2010. Firstly, this study calculated the amount of carbon footprint of each province using "Top-Down" life cycle approach and found that there were significant differences of carbon footprint and per capita carbon footprint in provincial China. The provinces with higher carbon footprint, mainly located in northern China, have large economic scales; the provinces with higher per capita carbon footprint are mainly distributed in central cities such as Beijing, Shanghai and energy-rich regions and heavy chemical bases. Secondly, with the aid of GIS and spatial analysis model (GWR model), this paper had unfolded that the expansion of economic scale is the main driver of the rapid growth of carbon footprint. The growth of population and urbanization also acted as promoting factors for the increase of the carbon footprint. Energy structure had no considerable promoting effect for the increase of the carbon footprint. Improving energy efficiency is the most important factor to inhibit the growing carbon footprint. Thirdly, developing low-carbon economies and low-carbon industries, as well as advocating low-carbon city construction and improving carbon efficiency would be the primary approaches to inhibit the rapid growth of carbon footprint. Moderately controlling the economic scale and population size would also be required to alleviate carbon footprint. Meanwhile, environmental protection and construction of low-carbon cities would
基金Supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology(2006BAD26B0902)National Program on Key Basic Research Project(973program)(2006CB705809)+2 种基金Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX-YW-09)Program of Soft Sciences from China Meteorological Administration(QR2008-39)Scientific Re-search Fund of Nanjing University of Information Science and Technology(20070105)~~
文摘This research was to introduce the characteristics of and countermeasures for ecological compensation. From the analysis of the current situation of ecological compensation, a series of characteristics of ecological compensation in resource exploitation and economic development were elaborated. The principles and practical issues are complex in ecological compensation, and the corresponding object, entity, financial system of ecological compensation are the keys to set up compensation mechanism, and studying of ecosystem service function and ecological footprint calculation are important ways to quantitatively assess ecological compensation, and are also important foundations for establishing calculation system of green GDP. Advocating the benefit compensation mechanism of ecological economy and enclosing ecological compensation principle are important ways for establishing the new environmental management pattern and manifesting social justice and the ecological civilization ideas. This research proposed some views of and approaches to ecological compensation mechanism for constructing natural resource development and utilization.The establishment of ecological compensation is an important approach to prevent the imbalance of resource allocation, the system guarantee for sustainable development, and the important basis of saving resources.
基金National Social Science Foundation of China, No.10ZD&M030 Non-profit Industry Financial Program of Ministry of Land and Resources of China, No.200811033 Environment Protection Scientific Foundation of Jiangsu Province, China, No.2009037Acknowledgements This paper obtained valuable revising comments and suggestions from reviewers. Dr. Zhang Xingyu and Dr. Jiao Shixing gave inspiring comments on paper ideas and calculation. Sun Zhenru helped to draw the illustrations. We would like to express our gratitude for their supports.
文摘Using energy consumption and land use data of each region of China in 2007, this paper established carbon emission and carbon footprint model based on energy consumption and estimated the carbon emission amount of fossil energy and rural biomass energy of dif- ferent regions of China in 2007. Through matching the energy consumption items with industrial spaces, this paper divided industrial spaces into five types: agricultural space, living & industrial-commercial space, transportation industrial space, fishery and water conservancy space, and other industrial space. Then the author analyzed the carbon emission intensity and carbon footprint of each industrial space. Finally, advices of decreasing industrial carbon footprint and optimizing industrial space pattern were put forward. The main conclusions are as following: (1) Total amount of carbon emission from energy consumption of China in 2007 was about 1.65 GtC, in which the proportion of carbon emission from fossil energy was 89%. (2) Carbon emission intensity of industrial space of China in 2007 was 1.98 t/hm^2, in which, carbon emission intensity of living & industrial-commercial space and of transportation industrial space was 55.16 t/hm^2 and 49.65 t/hm^2 respectively, they were high-carbon-emission industrial spaces among others. (3) Carbon footprint caused by industrial activities of China in 2007 was 522.34×10^6 hm^2, which brought about ecological deficit of 28.69×10^6 hm^2, which means that the productive lands were not sufficient to compensate for carbon footprint of industrial activities, and the compensating rate was 94.5%. As to the regional carbon footprint several regions have ecological profit while others have not. In general, the present ecological deficit caused by industrial activities was small in 2007. (4) Per unit area carbon footprint of industrial space in China was about 0.63 hm^2/hm^2 in 2007, in which that of living & industrial-commercial space was the highest (17.5 hm^2/hm^2). The per unit area car
基金National Natural Science Foundation of China, No.40801223 Research Project by Department ot Servlces and Management for Floating Population, Ministry of National Population and Family Planning Commission ofP. R. China (2010-11)
文摘A balanced ecological carrying capacity and its understanding are important to achieve sustainable development for human kind.Here,the concept of ecological carrying capacity has been used for measuring the dependencies between human and nature.China's ecological balance between supply and demand has become a global concern and is widely debated.In this study the 'Ecological Footprint' method was used to analyze the supply-demand balance of China's ecological carrying capacity.Firstly,the ecological supply and demand balance was calculated and evaluated,and secondly,the ecological carrying capacity index (ECCI) was derived for each county of China in 2007,and finally this paper systematically evaluated the ecological carrying capacity supply-demand balance of China.The results showed that ecological deficit appeared to be the main characteristic of ecological carrying capacity supply-demand balance in 2007 of China at county scale.In general,more than four-fifths of the Chinese population was concentrated in less than one-third of the land area and more than two-thirds of the land area was inhabited by less than one-fifth of the population.The spatial distribution of the ecological carrying capacity demand-supply was unbalanced ranging from significant overloading to affluence from southeastern to northwestern part of China.It appeared to be more dominant in regions located at coastal areas which are attracted by migrants and had a generally higher population density.Along with the rapid development and urbanization trends in China,ecological deficits in these regions will become more severe.
基金supported by the National Natural Science Foundation of China(6127334961203223+1 种基金61175109)the Innovation Foundation of BUAA for Ph.D.Graduates(YWF-14-YJSY-013)
文摘The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies.
基金co-supported by the National Natural Science Foundation of China(Nos.61273349,61203223)the Innovation Foundation of BUAA for Ph D Graduates(No.YWF-14-YJSY-013)
文摘Abstract This paper presents the novel use of the particle swarm optimization (PSO) to generate the end-to-end trajectory for hypersonic reentry vehicles in a quite simple formulation. The velocity- dependent bank angle profile is developed to reduce the search space of unknown parameters based on the constrained PSO algorithm. The path constraints are enforced by setting the fitness function to be infinite on condition that the particles violate the maximum allowable values. The PSO algo- rithm also provides a much easier means to satisfy the terminal conditions by adding penalty terms to the fitness function. Furthermore, the approximate reentry landing footprint is fast constructed by incorporating an interpolation model into the standardized bank angle profiles. Numerical sim ulations demonstrate that the PSO method is a feasible and flexible tool to generate the end-to-end trajectory and landing footprint for hypersonic reentry vehicles.
基金Foundation: National Social Science Foundation of China,No.10ZD&M030 Non-profit Industry Financial Program of Ministry of Land and Resources of China,No.200811033+2 种基金 A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions National Natural Science Foundation of China,No.40801063 No.40971104
文摘Study on regional carbon emission is one of the hot topics under the background of global climate change and low-carbon economic development, and also help to establish different low-carbon strategies for different regions. On the basis of energy consumption and land use data of different regions in China from 1999 to 2008, this paper established carbon emission and carbon footprint models based on total energy consumption, and calculated the amount of carbon emissions and carbon footprint in different regions of China from 1999 to 2008. The author also analyzed carbon emission density and per unit area carbon footprint for each region. Finally, advices for decreasing carbon footprint were put forward. The main conclusions are as follows: (1) Carbon emissions from total energy consumption increased 129% from 1999 to 2008 in China, but its spatial distribution pattern among different regions just slightly changed, the sorting of carbon emission amount was: Eastern China Northern China Central and Southern China Southwest China Northwest China. (2) The sorting of carbon emission density was: Eastern China Northeast China Central and Southern China Northern China Southwest China Northwest China from 1999 to 2003, but from 2004 Central and Southern China began to have higher carbon emission density than Northeast China, the order of other regions did not change. (3) Carbon footprint increased significantly since the rapid increasing of carbon emissions and less increasing area of pro-ductive land in different regions of China from 1999 to 2008. Northern China had the largest carbon footprint, and Northwest China, Eastern China, Northern China, Central and Southern China followed in turn, while Southwest China presented the lowest area of carbon footprint and the highest percentage of carbon absorption. (4) Mainly influenced by regional land area, Northern China presented the highest per unit area carbon footprint and followed by Eastern China, and Northeast China; Central and Southern China, and
基金supported by the National Natural Science Foundation of China (41161140352, 41471092)
文摘Human-environment relationship is a focus of academic researches and an understanding of the rela- tionship is important for making effective policies and decisions. In this study, based on rural household survey data of Taibus Banner, Duolun county and Zhengxiangbai Banner in the Inner Mongolia autonomous region of China, we identified the impact of livelihood diversification on ecosystems in these agro-pastoral areas by using the ecological footprint theory and methodology together with the one-way analysis of variance (ANOVA) and correlation analysis methods. In 2011, the total ecological footprint of consumption (EFC) was 0.665 g hm2, and the total ecological footprint of production (EFP) was 2.045 g hm2, which was more than three times the EFC. The ecological footprint of arable land consumption (EFAC) accounted for a large proportion of the EFC, and the ecological footprint of grassland production (EFGP) occupied a large proportion of the EFP. Both the ecological footprint of grassland consumption (EFGC) and EFGP had a significant positive correlation with the income, indicating that income was mainly depended on livestock production and the households with higher incomes consumed more livestock prod- ucts. The full-time farming households (FTFHs) had the highest EFP, ecological footprint of arable land production (EFAP), EFGP and EFGC, followed by the part-time farming households (PTFHs) and non-farming households (NFHs), which indicated that part-time farming and non-farming employment reduced the occupancy and con- sumption of rural households on local ecosystems and natural resources to some extent. When farming households engaged in livestock rearing, both the EFAP and EFAC became smaller, while the EFP, EFC, EFGC and EFGP increased significantly. The differences in ecological footprints among different household groups should be taken into account when making ecosystem conservation policies. Encouraging the laborers who have the advantages of participating in no
基金the National Natural Science Foundation of China(No.40401059)the Natural Science Foundation of the Education Department of Jiangsu Province(No.07KJD170123)the Natural Science Foundation of Nanjing Xiaozhuang University(No.2007NXY06)
文摘Based on the theory of emergy analysis,a modified model of ecological footprint accounting,termed emergetic ecological footprint(EMEF)in contrast to the conventional ecological footprint(EF)model,is formulated and applied to a case study of Jiangsu cropland,China.Comparisons between the EF and the EMEF with respect to grain,cotton,and food oil were outlined.Per capita EF and EMEF of cropland were also presented to depict the resources consumption level by comparing the biocapacity(BC)or emergetic biocapacity(EMBC,a new BC calculation by emergy analysis) of the same area.In the meanwhile,the ecological sustainability index(ESI),a new concept initiated by the authors, was established in the modified model to indicate and compare the sustainability of cropland use at different levels and between different regions.The results from conventional EF showed that per capita EF of the cropland has exceeded its per capita BC in Jiangsu since 1986.In contrast,based on the EMBC,the per capita EMEF exceeded the per capita EMBC 5 years earlier.The ESIs of Jiangsu cropland use were between 0.7 and 0.4 by the conventional method,while the numbers were between 0.7 and 0.3 by the modified one.The fact that the results of the two methods were similar showed that the modified model was reasonable and feasible,although some principles of the EF and EMEF were quite different. Also,according to the realities of Jiangsu cropland use,the results from the modified model were more acceptable.
文摘The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in c