期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thioredoxin Reductase Type C (NTRC) Orchestrates Enhanced Thermotolerance to Arabidopsis by Its Redox-Dependent Holdase Chaperone Function 被引量:5
1
作者 Ho Byoung Chae Jeong Chan Moon +11 位作者 Mi Rim Shin Yong Hun Chi Young Jun Jung Sun Yong Lee Ganesh M. Nawkar Hyun Suk Jung Jae Kyung Hyun Woe Yeon Kim Chang Ho Kang Dae-Jin Yun Kyun Oh Lee Sang Yeol Lee 《Molecular Plant》 SCIE CAS CSCD 2013年第2期323-336,共14页
Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reduc-tase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°E) resulting in... Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reduc-tase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°E) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrcl) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the protein's biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure.. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and fol-dase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRC°E plants. However, after prolonged incubation under heat shock, NTRC°E plants tolerated the stress to a higher degree than C217/454S-NTRC°E plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH. 展开更多
关键词 NADPH-thioredoxin reductase type C (NTRC) oligomeric complexes disulfide reductase foldase and holdasechaperone functions redox thermotolerance.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部