Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable gr...Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.展开更多
A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnet...A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method.展开更多
The ecosystem apparent quantum yield(α),maximum rate of gross CO_(2) assimilation(Pmax)and daytime ecosystem respiration rate(R.),reflecting the physiological functioning of ecosystem,are vital photosynthetic paramet...The ecosystem apparent quantum yield(α),maximum rate of gross CO_(2) assimilation(Pmax)and daytime ecosystem respiration rate(R.),reflecting the physiological functioning of ecosystem,are vital photosynthetic parameters for the estimation of ecosystem carbon budget.Climatic drivers may affect photosynthetic parameters both directly and indirectly by altering the response of vegetation.However,the relative contribution and regulation pathway of environmental and physiological controls remain unclear,especially in semi-arid grasslands.We analyzed seasonal and interannual variations of photosynthetic parameters derived from eddy-covariance observation in a typical semi-arid grassland in Inner Mongolia,Northern China,over 12 years from 2006 to 2017.Regression analyses and a structural equation model(SEM)were adopted to separate the contributions of environmental and physiological effects.The photosynthetic parameters showed unimodal seasonal patterns and significantly interannual variations.Variations of air temperature(T,)and soil water content(SWC)drove the seasonal patterns of photosynthetic parameters,while SWC predominated their interannual variations.Moreover,contrasting with the predominant roles of T,onαand Ra,SWC explained more variance of Pmax than T,Results of SEM revealed that environmental factors impacted photosynthetic parameters both directly and indirectly through regulating physiological responses reflected by stomatal conductance at the canopy level.Moreover,leaf area index(LAl)directly affectedα,Pmax and R,and dominated the variation of Pmax.On the other hand,SWC influenced photosynthetic parameters indirectly through LAl and canopy surface conductance(gc).Our findings highlight the importance of physiological regulation on the photosynthetic parameters and carbon assimilation capacity,especially in water-limitedgrassland ecosystems.展开更多
Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transfor...Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.51872090,51772097,52372252)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+1 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)。
文摘Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs.
基金the National Natural Science Foundation of China under grant no.51767009in part by the Plan Project of Jiangxi Province of P.R.China under grant no.GJJ160598 and 20181BAB206035in part by the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUST)。
文摘A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method.
基金the National Key Research and Development Program of China(2017YFA0604801)the National Natural Science Foundation of China(32071565 and 41773084)。
文摘The ecosystem apparent quantum yield(α),maximum rate of gross CO_(2) assimilation(Pmax)and daytime ecosystem respiration rate(R.),reflecting the physiological functioning of ecosystem,are vital photosynthetic parameters for the estimation of ecosystem carbon budget.Climatic drivers may affect photosynthetic parameters both directly and indirectly by altering the response of vegetation.However,the relative contribution and regulation pathway of environmental and physiological controls remain unclear,especially in semi-arid grasslands.We analyzed seasonal and interannual variations of photosynthetic parameters derived from eddy-covariance observation in a typical semi-arid grassland in Inner Mongolia,Northern China,over 12 years from 2006 to 2017.Regression analyses and a structural equation model(SEM)were adopted to separate the contributions of environmental and physiological effects.The photosynthetic parameters showed unimodal seasonal patterns and significantly interannual variations.Variations of air temperature(T,)and soil water content(SWC)drove the seasonal patterns of photosynthetic parameters,while SWC predominated their interannual variations.Moreover,contrasting with the predominant roles of T,onαand Ra,SWC explained more variance of Pmax than T,Results of SEM revealed that environmental factors impacted photosynthetic parameters both directly and indirectly through regulating physiological responses reflected by stomatal conductance at the canopy level.Moreover,leaf area index(LAl)directly affectedα,Pmax and R,and dominated the variation of Pmax.On the other hand,SWC influenced photosynthetic parameters indirectly through LAl and canopy surface conductance(gc).Our findings highlight the importance of physiological regulation on the photosynthetic parameters and carbon assimilation capacity,especially in water-limitedgrassland ecosystems.
基金This work was supported by the National Natural Science Foundation of China(No.51802310)All animal experiments were conducted according to protocols approved by the Institutional Animal Care and Use Committee in the Institute of Chemistry,Chinese Academy of Sciences.
文摘Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes.