This work presents a brief introduction on three kinds of newly developed Nd^(3+)-doped laser glasses in Shanghai Institute of Optics and Fine Mechanics(SIOM), China. Two Nd^(3+)-doped phosphate glasses with lower the...This work presents a brief introduction on three kinds of newly developed Nd^(3+)-doped laser glasses in Shanghai Institute of Optics and Fine Mechanics(SIOM), China. Two Nd^(3+)-doped phosphate glasses with lower thermal expansion coefficient and thermal shock resistance 4 times higher than that of N31 glass are developed for laser processing.Nd:Silicate and Nd:Aluminate glasses with peak emission wavelength at 1061 and 1065 nm, effective emission bandwidth of 34 and 50 nm, respectively, are developed for Exawatt-class laser system application. Fluorophosphate glasses with low nonlinear refractive index(n_2=0.6–0.86) and long fluorescence lifetime(430–510 μs) are investigated for the purpose of decreasing B integral in high-power laser system. The properties of all these glasses are presented and compared with those of commercial neodymium laser glasses.展开更多
Using the technique of high-temperature melting, a new Er3+/Yb3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er3+ and Yb3+ concent...Using the technique of high-temperature melting, a new Er3+/Yb3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er3+ and Yb3+ concentration on the spectroscopic properties of the glass sample was also discussed. According to the Judd Ofelt theory, the oscillator strength was computed. The lifetime of 4113/2 level (t-m) of Er3+ ions was 8.23 ms, and the full width at half maximum of the dominating emission peak was 68 nm at 1.53 μm. The large stimulated emission cross section of the Er3+ was calculated by the McCumher theory. The spectroscopic properties of Er3+ ion were compared with those in different glasses. The full width at half maximum and σe are larger than those of other glass hosts, indicating this studied glass may be a potentially useful candidate for high-gain erbium-doped fiber amplifier.展开更多
文摘This work presents a brief introduction on three kinds of newly developed Nd^(3+)-doped laser glasses in Shanghai Institute of Optics and Fine Mechanics(SIOM), China. Two Nd^(3+)-doped phosphate glasses with lower thermal expansion coefficient and thermal shock resistance 4 times higher than that of N31 glass are developed for laser processing.Nd:Silicate and Nd:Aluminate glasses with peak emission wavelength at 1061 and 1065 nm, effective emission bandwidth of 34 and 50 nm, respectively, are developed for Exawatt-class laser system application. Fluorophosphate glasses with low nonlinear refractive index(n_2=0.6–0.86) and long fluorescence lifetime(430–510 μs) are investigated for the purpose of decreasing B integral in high-power laser system. The properties of all these glasses are presented and compared with those of commercial neodymium laser glasses.
基金supported by the National Natural Science Foundation of China (Grant No. 11075026)
文摘Using the technique of high-temperature melting, a new Er3+/Yb3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er3+ and Yb3+ concentration on the spectroscopic properties of the glass sample was also discussed. According to the Judd Ofelt theory, the oscillator strength was computed. The lifetime of 4113/2 level (t-m) of Er3+ ions was 8.23 ms, and the full width at half maximum of the dominating emission peak was 68 nm at 1.53 μm. The large stimulated emission cross section of the Er3+ was calculated by the McCumher theory. The spectroscopic properties of Er3+ ion were compared with those in different glasses. The full width at half maximum and σe are larger than those of other glass hosts, indicating this studied glass may be a potentially useful candidate for high-gain erbium-doped fiber amplifier.