Development of new self-calibrating fluorescent sensing methods has been a popular research field with the aim of protecting the human health and environment sustainability. In this work, a novel Eu-based metal organi...Development of new self-calibrating fluorescent sensing methods has been a popular research field with the aim of protecting the human health and environment sustainability. In this work, a novel Eu-based metal organic framework(MOF) Eu(2,6-NDC)(COO)(BUC-88) was developed by employing 2,6-NDC(2,6-naphthalenedicarboxylic acid) as bridging ligands. BUC-88 performed different sensing process toward quinolone antibiotics and tetracyclines antibiotics in terms of fluorescence intensity and color. BUC-88exhibited excellent selectivity and sensitivity detection property toward enrofloxacin(ENR), norfloxacin(NOR) and ciprofloxacin(CIP) over other Pharmaceutical and Personal Care Products(PPCPs), accomplishing the detection limit of 0.12 μmol/L, 0.52 μmol/L, 0.75 μmol/L, respectively. Notably, BUC-88 acted as an excellent fluorescence sensor for tetracyclines antibiotics with fast response time(less than 1 s), high selectivity and sensitivity(LODs = 0.08 μmol/L). The fluorescent detection method was successfully used for visual and ultrasensitive detection of ENR, NOR, CIP and tetracycline hydrochloride(TC) in lake water with satisfied recovery from 99.75% to 102.30%. Finally, the photoinduced electron transfer and the competitive absorption of ultraviolet light are the main mechanisms for sensitive detection toward quinolone antibiotics and tetracyclines antibiotics.展开更多
基金supported by National Natural Science Foundation of China (Nos. 51878023 and 21806008)Beijing Talent Project (No. 2020A27)The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (No.X20147/X20141/X20135/X20146)。
文摘Development of new self-calibrating fluorescent sensing methods has been a popular research field with the aim of protecting the human health and environment sustainability. In this work, a novel Eu-based metal organic framework(MOF) Eu(2,6-NDC)(COO)(BUC-88) was developed by employing 2,6-NDC(2,6-naphthalenedicarboxylic acid) as bridging ligands. BUC-88 performed different sensing process toward quinolone antibiotics and tetracyclines antibiotics in terms of fluorescence intensity and color. BUC-88exhibited excellent selectivity and sensitivity detection property toward enrofloxacin(ENR), norfloxacin(NOR) and ciprofloxacin(CIP) over other Pharmaceutical and Personal Care Products(PPCPs), accomplishing the detection limit of 0.12 μmol/L, 0.52 μmol/L, 0.75 μmol/L, respectively. Notably, BUC-88 acted as an excellent fluorescence sensor for tetracyclines antibiotics with fast response time(less than 1 s), high selectivity and sensitivity(LODs = 0.08 μmol/L). The fluorescent detection method was successfully used for visual and ultrasensitive detection of ENR, NOR, CIP and tetracycline hydrochloride(TC) in lake water with satisfied recovery from 99.75% to 102.30%. Finally, the photoinduced electron transfer and the competitive absorption of ultraviolet light are the main mechanisms for sensitive detection toward quinolone antibiotics and tetracyclines antibiotics.