真菌毒素对人和动物具有剧毒和致癌性,且预防和控制其对食品造成的污染较为困难,因此人们对真菌毒素的关注度越来越高。检测食品中的真菌毒素十分必要,传统检测方法的检测结果准确、可靠,但所需设备昂贵、检测时间长,不符合快速检测真...真菌毒素对人和动物具有剧毒和致癌性,且预防和控制其对食品造成的污染较为困难,因此人们对真菌毒素的关注度越来越高。检测食品中的真菌毒素十分必要,传统检测方法的检测结果准确、可靠,但所需设备昂贵、检测时间长,不符合快速检测真菌毒素的要求。因此,需要开发出快速、灵敏、准确且经济的真菌毒素检测方法。基于荧光共振能量转移(fluorescence resonance energy transfer,FRET)效应的荧光传感器由于操作简单、反应速度快、结果可靠且成本低而广泛应用于检测行业。本文主要介绍了基于FRET效应荧光传感器的检测机制,综述了该传感器在真菌毒素检测中的应用情况,提出了目前荧光传感器仍存在的问题并对其未来的发展趋势进行了展望,以期为新型荧光传感器的设计及真菌毒素检测时灵敏度的优化提供参考。展开更多
Due to strong photoluminescence,extraordinary photostability,excellent biocompatibility,and good water-solubility,metal nanoclusters have attracted enormous attention since discovered.They are found to be novel fluore...Due to strong photoluminescence,extraordinary photostability,excellent biocompatibility,and good water-solubility,metal nanoclusters have attracted enormous attention since discovered.They are found to be novel fluorescence labels for biological applications and environmental monitoring.Recently the chemiluminescence(CL) or electrochemiluminescence(ECL) of metal nanoclusters has received increasing attention.This review covers recent vibrant developments in this field of the past 5 years,and highlights different functions of metal nanoclusters in various CL and ECL systems,such as luminophores,catalysts,and quenchers.Latest synthetic methods of metal nanoclusters used in CL or ECL are also summarized.Furthermore,we discuss some perspectives and critical challenges of this field in the near future.展开更多
荧光寿命的检测是荧光光学传感器的核心内容,国际上尝试了多种方法来拟合这种理论上为单指数衰减信号的荧光衰减曲线。这些方法包括非线性函数标准拟合方法,即Leven burg Marquardt方法,以及Prony方法、FFT方法,对数拟合法等等。为了克...荧光寿命的检测是荧光光学传感器的核心内容,国际上尝试了多种方法来拟合这种理论上为单指数衰减信号的荧光衰减曲线。这些方法包括非线性函数标准拟合方法,即Leven burg Marquardt方法,以及Prony方法、FFT方法,对数拟合法等等。为了克服在实际应用中发生的信号退化,需要在测量信号衰减寿命的同时测量信号的初始强度。文章介绍了一种加权的对数拟合法,经计算机仿真及实际数据测试均可以得到和Levenburg Marquardt方法非常接近的结果,且拟合时间大大缩短,测量稳定性大大提高。仿真测试及具体实验测试结果显示了这种方法的有效性。该方法不仅与Levenburg Marquardt方法的偏差曲线非常相似,而且实验测得的荧光寿命与Levenburg Marquardt方法偏差在0.2%以内。展开更多
Recent technological advances in cotton(Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis.High-throughput phenotyping(HTP) is a non-destructive and rapid a...Recent technological advances in cotton(Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis.High-throughput phenotyping(HTP) is a non-destructive and rapid approach of monitoring and measuring multiple phenotypic traits related to the growth,yield,and adaptation to biotic or abiotic stress.Researchers have conducted extensive experiments on HTP and developed techniques including spectral,fluorescence,thermal,and three-dimensional imaging to measure the morphological,physiological,and pathological resistance traits of cotton.In addition,ground-based and aerial-based platforms were also developed to aid in the implementation of these HTP systems.This review paper highlights the techniques and recent developments for HTP in cotton,reviews the potential applications according to morphological and physiological traits of cotton,and compares the advantages and limitations of these HTP systems when used in cotton cropping systems.Overall,the use of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton.However,because of its relative novelty,HTP has some limitations that constrains the ability to take full advantage of what it can offer.These challenges need to be addressed to increase the accuracy and utility of HTP,which can be done by integrating analytical techniques for big data and continuous advances in imaging.展开更多
A luminescent lanthanide-organic framework[Eu_(2)(adip)(H_(2)adip)(DMF)_(2)]·CH_(3)OH(1)was synthesized by a solvothermal method using anthracene-based ligand 5,5’-(anthracene-9,10-diyl)diisophthalic acid(H4adip...A luminescent lanthanide-organic framework[Eu_(2)(adip)(H_(2)adip)(DMF)_(2)]·CH_(3)OH(1)was synthesized by a solvothermal method using anthracene-based ligand 5,5’-(anthracene-9,10-diyl)diisophthalic acid(H4adip).1 possesses a 3D coordination framework,which could be rationalized as a 4,8-connected 2-nodal(4^(16)6^(12))(4^(4)6^(2))topological network.1 shows an excellent linear increase in fluorescence intensity as the pH value rises from 4.8 to 7.1.Particularly,the fluorescence enhancement percentage reaches 588%for each increase of pH value,which is the highest value recorded for fluorescence pH sensing materials,promoting the sensitivity of pH detection within the physiological pH range.In addition,1 can also specifically recognize carbon disulfide biomarkers 2-thiothiazolidine-4-carboxylic acid(TTCA)and antibiotic aztreonam(ATM)by fluorescence quenching,with the KSV values of 1.02×10^(5)L·mol^(-1)(0-10μmol·L^(-1))and 4.67×10^(5)L·mol^(-1)(0-50μmol·L^(-1)),the limit of detection(LOD)of 86 nmol·L^(-1)and 19 nmol·L^(-1),respectively.Among only a few cases reported,the detection sensitivities of 1 for both TTCA and ATM are the highest.The sensing mechanisms of pH,TTCA,and ATM are also discussed in detail.展开更多
Adenosine triphosphate(ATP)plays an important role in various biological processes and the ATP level is closely associated with many diseases.Herein,we designed a novel dual-emissive fluorescence nanoplatform for ATP ...Adenosine triphosphate(ATP)plays an important role in various biological processes and the ATP level is closely associated with many diseases.Herein,we designed a novel dual-emissive fluorescence nanoplatform for ATP sensing based on red emissive europium metal-organic framework(Eu-MOF)and blue emissive gold nanoclusters(AuNCs).The presence of ATP causes the decomposition of Eu-MOF owing to strong affinity of Eu3+with ATP.As a result,the red emission of Eu-MOF decreases while the blue emission of AuNCs remains unchanged.The distinct red/blue emission intensity change enables the establishment of a ratiometric fluorescent and visual sensor of ATP.Moreover,a fluorescent paper-based sensor was fabricated with the ratiometric ATP probes,which enabled easy-to-use and visual detection of ATP in serum samples with a smartphone.展开更多
Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitati...Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.展开更多
A n-conjugated phenylaza-15-crown-5-triazol-substituted coumarin fluoroionophore 1 was synthesized by cop- per(I)-catalyzed Huisgen alkyne-azide 1,3-dipolar cycloaddition (CuAAC "click" reaction). 1 can display ...A n-conjugated phenylaza-15-crown-5-triazol-substituted coumarin fluoroionophore 1 was synthesized by cop- per(I)-catalyzed Huisgen alkyne-azide 1,3-dipolar cycloaddition (CuAAC "click" reaction). 1 can display selective fluorescence enhancement toward Fe3+ over Hg2+, Cr3+ and the other metal ions in aqueous solution. In sharp con- trast, the fluorescence behavior between Fe3+ and Hg2+ is completely reversed in EtOH. That is, Hg2+ gives the largest fluorescence enhancement over Cr3+, Fe3+ and the other metal ions.展开更多
Drug abuse directly endangers human health and social security,hence its sensitive and rapid detection is vitally important.In recent years,organic film-based fluorescent sensing technology has attracted more and more...Drug abuse directly endangers human health and social security,hence its sensitive and rapid detection is vitally important.In recent years,organic film-based fluorescent sensing technology has attracted more and more attention in the detection of drugs and explosives due to its advantages of simple operation and rapid detection.For film-based fluorescent sensors,in addition to sensitive materials,the surface morphology of the film is also an important factor affecting the performance.In previous studies,the regulation of surface morphology mainly depends on concentration changes or complex templates.Here,a novel fluorescent polymer probe was designed and synthesized,and a simple and efficient ultraviolet(UV)-ozone substrate treatment method is used to adjust their surface morphology.The results show that film has an excellent fluorescence enhancement effect upon exposure to methylphenethylamine(MPEA,a simulant of methamphetamine)vapor.The sensing effect of the film is significantly improved after UV-ozone substrate treatment,and the limit of detection was decreased by 10.4 times from 2.59 to 0.25 ppm.Further experiments show that the sensing performance of other fluorescent probe can also be improved by the UV-ozone substrate treatment.This convenient and general method may become a very effective approach to improve the performance of film-based fluorescent sensors.展开更多
文摘真菌毒素对人和动物具有剧毒和致癌性,且预防和控制其对食品造成的污染较为困难,因此人们对真菌毒素的关注度越来越高。检测食品中的真菌毒素十分必要,传统检测方法的检测结果准确、可靠,但所需设备昂贵、检测时间长,不符合快速检测真菌毒素的要求。因此,需要开发出快速、灵敏、准确且经济的真菌毒素检测方法。基于荧光共振能量转移(fluorescence resonance energy transfer,FRET)效应的荧光传感器由于操作简单、反应速度快、结果可靠且成本低而广泛应用于检测行业。本文主要介绍了基于FRET效应荧光传感器的检测机制,综述了该传感器在真菌毒素检测中的应用情况,提出了目前荧光传感器仍存在的问题并对其未来的发展趋势进行了展望,以期为新型荧光传感器的设计及真菌毒素检测时灵敏度的优化提供参考。
基金supported by the National Natural Science Foundation of China(21344008,21475123)the Financial Support by Ministry of Education of Liaoning Province(L2015434)+2 种基金the Scientific Public Welfare Research Foundation of Liaoning Province(2015004016)the doctoral scientific research foundation of Liaoning Province of China (201501077)the Open Funds of the State Key Laboratory of Environmental Chemistry
文摘Due to strong photoluminescence,extraordinary photostability,excellent biocompatibility,and good water-solubility,metal nanoclusters have attracted enormous attention since discovered.They are found to be novel fluorescence labels for biological applications and environmental monitoring.Recently the chemiluminescence(CL) or electrochemiluminescence(ECL) of metal nanoclusters has received increasing attention.This review covers recent vibrant developments in this field of the past 5 years,and highlights different functions of metal nanoclusters in various CL and ECL systems,such as luminophores,catalysts,and quenchers.Latest synthetic methods of metal nanoclusters used in CL or ECL are also summarized.Furthermore,we discuss some perspectives and critical challenges of this field in the near future.
文摘Recent technological advances in cotton(Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis.High-throughput phenotyping(HTP) is a non-destructive and rapid approach of monitoring and measuring multiple phenotypic traits related to the growth,yield,and adaptation to biotic or abiotic stress.Researchers have conducted extensive experiments on HTP and developed techniques including spectral,fluorescence,thermal,and three-dimensional imaging to measure the morphological,physiological,and pathological resistance traits of cotton.In addition,ground-based and aerial-based platforms were also developed to aid in the implementation of these HTP systems.This review paper highlights the techniques and recent developments for HTP in cotton,reviews the potential applications according to morphological and physiological traits of cotton,and compares the advantages and limitations of these HTP systems when used in cotton cropping systems.Overall,the use of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton.However,because of its relative novelty,HTP has some limitations that constrains the ability to take full advantage of what it can offer.These challenges need to be addressed to increase the accuracy and utility of HTP,which can be done by integrating analytical techniques for big data and continuous advances in imaging.
基金supported by the National Natural Science Foundation of China (21973047 and 62074082)Jiangsu Province Double Innovation Talent Program (090300014001).
文摘A luminescent lanthanide-organic framework[Eu_(2)(adip)(H_(2)adip)(DMF)_(2)]·CH_(3)OH(1)was synthesized by a solvothermal method using anthracene-based ligand 5,5’-(anthracene-9,10-diyl)diisophthalic acid(H4adip).1 possesses a 3D coordination framework,which could be rationalized as a 4,8-connected 2-nodal(4^(16)6^(12))(4^(4)6^(2))topological network.1 shows an excellent linear increase in fluorescence intensity as the pH value rises from 4.8 to 7.1.Particularly,the fluorescence enhancement percentage reaches 588%for each increase of pH value,which is the highest value recorded for fluorescence pH sensing materials,promoting the sensitivity of pH detection within the physiological pH range.In addition,1 can also specifically recognize carbon disulfide biomarkers 2-thiothiazolidine-4-carboxylic acid(TTCA)and antibiotic aztreonam(ATM)by fluorescence quenching,with the KSV values of 1.02×10^(5)L·mol^(-1)(0-10μmol·L^(-1))and 4.67×10^(5)L·mol^(-1)(0-50μmol·L^(-1)),the limit of detection(LOD)of 86 nmol·L^(-1)and 19 nmol·L^(-1),respectively.Among only a few cases reported,the detection sensitivities of 1 for both TTCA and ATM are the highest.The sensing mechanisms of pH,TTCA,and ATM are also discussed in detail.
基金supported by the National Natural Science Foundation of China(No.22274131)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2020-QZ-01).
文摘Adenosine triphosphate(ATP)plays an important role in various biological processes and the ATP level is closely associated with many diseases.Herein,we designed a novel dual-emissive fluorescence nanoplatform for ATP sensing based on red emissive europium metal-organic framework(Eu-MOF)and blue emissive gold nanoclusters(AuNCs).The presence of ATP causes the decomposition of Eu-MOF owing to strong affinity of Eu3+with ATP.As a result,the red emission of Eu-MOF decreases while the blue emission of AuNCs remains unchanged.The distinct red/blue emission intensity change enables the establishment of a ratiometric fluorescent and visual sensor of ATP.Moreover,a fluorescent paper-based sensor was fabricated with the ratiometric ATP probes,which enabled easy-to-use and visual detection of ATP in serum samples with a smartphone.
基金supported by the National Natural Science Foundation of China (51772085 and 12072110)the Natural Science Foundation of Hunan Province (2020JJ4190)。
文摘Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.
文摘A n-conjugated phenylaza-15-crown-5-triazol-substituted coumarin fluoroionophore 1 was synthesized by cop- per(I)-catalyzed Huisgen alkyne-azide 1,3-dipolar cycloaddition (CuAAC "click" reaction). 1 can display selective fluorescence enhancement toward Fe3+ over Hg2+, Cr3+ and the other metal ions in aqueous solution. In sharp con- trast, the fluorescence behavior between Fe3+ and Hg2+ is completely reversed in EtOH. That is, Hg2+ gives the largest fluorescence enhancement over Cr3+, Fe3+ and the other metal ions.
基金supported by the National Natural Science Foundation of China(Nos.62022085,61901456,61831021,61731016,and 61771460)the National Key R&D Program of China(No.2018AAA0103100)the Science and Technology Commission of Shanghai Municipality(Nos.19YF1455700 and 19142203500).
文摘Drug abuse directly endangers human health and social security,hence its sensitive and rapid detection is vitally important.In recent years,organic film-based fluorescent sensing technology has attracted more and more attention in the detection of drugs and explosives due to its advantages of simple operation and rapid detection.For film-based fluorescent sensors,in addition to sensitive materials,the surface morphology of the film is also an important factor affecting the performance.In previous studies,the regulation of surface morphology mainly depends on concentration changes or complex templates.Here,a novel fluorescent polymer probe was designed and synthesized,and a simple and efficient ultraviolet(UV)-ozone substrate treatment method is used to adjust their surface morphology.The results show that film has an excellent fluorescence enhancement effect upon exposure to methylphenethylamine(MPEA,a simulant of methamphetamine)vapor.The sensing effect of the film is significantly improved after UV-ozone substrate treatment,and the limit of detection was decreased by 10.4 times from 2.59 to 0.25 ppm.Further experiments show that the sensing performance of other fluorescent probe can also be improved by the UV-ozone substrate treatment.This convenient and general method may become a very effective approach to improve the performance of film-based fluorescent sensors.