A mathematic model of two-phase flow and a physical model of two-dimensional (2D) vertical section for the plate-type structured packing Mellapak 250.Y were set up and verified. The models were used to study the influ...A mathematic model of two-phase flow and a physical model of two-dimensional (2D) vertical section for the plate-type structured packing Mellapak 250.Y were set up and verified. The models were used to study the influence of packing’s surface microstructure on the continuity of liquid film and the amount of liquid holdup. Simulation results show that the round corner shape and micro wavy structure are favorable in remaining the continuity of liquid film and increasing the amount of liquid holdup. The appropriate liquid flow rate was determined by investigating different liquid loadings to obtain an unbroken liquid film on the packing surface. The pressure difference between inlet and outlet for gas phase allowed gas and liquid to flow countercurrently in a 2D computational domain. The direction change of gas flow occurred near the phase interface area.展开更多
To analyze the nonlinear dynamics of a tilting-pad journal bearing(TPJB)-rotor system with high accuracy and speed,the database method(DM)is modified to rapidly determine the nonlinear fluid film force(NFFF)of a TPJB ...To analyze the nonlinear dynamics of a tilting-pad journal bearing(TPJB)-rotor system with high accuracy and speed,the database method(DM)is modified to rapidly determine the nonlinear fluid film force(NFFF)of a TPJB while considering turbulent and thermal effects.A high-accuracy,large-capacity NFFF database for a single pad is constructed by numerically solving the turbulent adiabatic hydrodynamic model for five equivalent state variables of the journal,which are discretized in the pad coordinates.The remaining variables are not discretized in the DM.A combined linear and parabolic interpolation polynomial based on the database is established to accurately calculate the NFFF of the tilting pads;thus,the NFFF of a four-pad TPJB is obtained in the bearing coordinates.The DM is applied to analyze and compare the nonlinear dynamic behavior of a water-lubricated TPJB-Jeffcott rotor system with and without turbulent and thermal effects.The present DM solution without these effects and the previous DM solution are shown to be consistent.The results demonstrate the importance of the flow regime and the negligibility of temperature increases in the nonlinear dynamics of a water-lubricated TPJB.This work contributes to the accurate and efficient analysis of the nonlinear dynamics of high-speed TPJBs and low-viscosity-fluid-lubricated TPJBs.展开更多
Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possi...Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recover展开更多
基金Supported by the National Key Basic R&D Program ("973" Program, No. 2009CB219905 and 2009CB219907)the Program for Changjiang Scholars and Innovative Research Teams in Universities (No. IRT0936)
文摘A mathematic model of two-phase flow and a physical model of two-dimensional (2D) vertical section for the plate-type structured packing Mellapak 250.Y were set up and verified. The models were used to study the influence of packing’s surface microstructure on the continuity of liquid film and the amount of liquid holdup. Simulation results show that the round corner shape and micro wavy structure are favorable in remaining the continuity of liquid film and increasing the amount of liquid holdup. The appropriate liquid flow rate was determined by investigating different liquid loadings to obtain an unbroken liquid film on the packing surface. The pressure difference between inlet and outlet for gas phase allowed gas and liquid to flow countercurrently in a 2D computational domain. The direction change of gas flow occurred near the phase interface area.
文摘To analyze the nonlinear dynamics of a tilting-pad journal bearing(TPJB)-rotor system with high accuracy and speed,the database method(DM)is modified to rapidly determine the nonlinear fluid film force(NFFF)of a TPJB while considering turbulent and thermal effects.A high-accuracy,large-capacity NFFF database for a single pad is constructed by numerically solving the turbulent adiabatic hydrodynamic model for five equivalent state variables of the journal,which are discretized in the pad coordinates.The remaining variables are not discretized in the DM.A combined linear and parabolic interpolation polynomial based on the database is established to accurately calculate the NFFF of the tilting pads;thus,the NFFF of a four-pad TPJB is obtained in the bearing coordinates.The DM is applied to analyze and compare the nonlinear dynamic behavior of a water-lubricated TPJB-Jeffcott rotor system with and without turbulent and thermal effects.The present DM solution without these effects and the previous DM solution are shown to be consistent.The results demonstrate the importance of the flow regime and the negligibility of temperature increases in the nonlinear dynamics of a water-lubricated TPJB.This work contributes to the accurate and efficient analysis of the nonlinear dynamics of high-speed TPJBs and low-viscosity-fluid-lubricated TPJBs.
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52004306 and 52174045)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant Nos.ZLZX2020-01 and ZLZX2020-02)the National Sciencea and Technology Major Projects of China(Grant Nos.2016ZX05030005and 2016ZX05051003).
文摘Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recover