We propose a unified thermodynamic model of flow-induced crystallization of polymer(uFIC),which incorporates not only the conformational entropy reduction but also the contributions of flow-induced chain orientation,t...We propose a unified thermodynamic model of flow-induced crystallization of polymer(uFIC),which incorporates not only the conformational entropy reduction but also the contributions of flow-induced chain orientation,the interaction of ordered segments,and the free energy of crystal nucleus and crystal morphology.Specifically,it clarifies the determining parameters of the critical crystal nucleus size,and is able to account for the acceleration of nucleation,the emergence of precursor,different crystal morphologies and structures induced by flow.Based on the nucleation barrier under flow,we analyze at which condition precursor may occur and how flow affects the competition among different crystal forms such as orthorhombic and hexagonal phases of polyethylene.According to the uFIC model,the different crystal morphologies and structures in the flow-temperature space have been clarified,which give a good agreement with experiments of FIC.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51890872 and 51633009)the National Key R&D Program of China(2018YFB0704200)。
文摘We propose a unified thermodynamic model of flow-induced crystallization of polymer(uFIC),which incorporates not only the conformational entropy reduction but also the contributions of flow-induced chain orientation,the interaction of ordered segments,and the free energy of crystal nucleus and crystal morphology.Specifically,it clarifies the determining parameters of the critical crystal nucleus size,and is able to account for the acceleration of nucleation,the emergence of precursor,different crystal morphologies and structures induced by flow.Based on the nucleation barrier under flow,we analyze at which condition precursor may occur and how flow affects the competition among different crystal forms such as orthorhombic and hexagonal phases of polyethylene.According to the uFIC model,the different crystal morphologies and structures in the flow-temperature space have been clarified,which give a good agreement with experiments of FIC.