Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow...Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic (SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper. From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27% respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.展开更多
In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achi...In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achieve an overall system model,the system is divided into five modules:the PEMFC stack(anode and cathode flows,membrane hydration,and stack voltage and power),cathode air supply(air compressor,supply manifold,cooler,and humidifier),anode fuel supply(hydrogen valve and humidifier),cathode exhaust exit(exit manifold and water return),and power conditioning(DC/DC and DC/AC) modules.Using a combination of empirical and physical modeling techniques,the model is developed to set the operation conditions of current,temperature,and cathode and anode gas flows and pressures,which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system.The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system,which is mathematically simple for system parameters and control designs.展开更多
This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control va...This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control valves over two fanges of operating conditions. A mathematical model of the dynamics of the System is etallished and design criteria are obtained from a linearised form of that model. The influence of variations in tile axial force on the spool of the main valve is investigated, and the use of the resultS in the design of systems of the proposed kind is discussed.展开更多
基金The Hi-Tech Research and Development Program(863) of China(No. 2002AA601021) the National Basic Research Program(973) ofChina(No. 2005CB724205) Xichang Government, Sichuan Province
文摘Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic (SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper. From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27% respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.
基金Project supported by the National Natural Science Foundation of China (No.10472101)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20070335184)
文摘In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achieve an overall system model,the system is divided into five modules:the PEMFC stack(anode and cathode flows,membrane hydration,and stack voltage and power),cathode air supply(air compressor,supply manifold,cooler,and humidifier),anode fuel supply(hydrogen valve and humidifier),cathode exhaust exit(exit manifold and water return),and power conditioning(DC/DC and DC/AC) modules.Using a combination of empirical and physical modeling techniques,the model is developed to set the operation conditions of current,temperature,and cathode and anode gas flows and pressures,which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system.The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system,which is mathematically simple for system parameters and control designs.
文摘This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control valves over two fanges of operating conditions. A mathematical model of the dynamics of the System is etallished and design criteria are obtained from a linearised form of that model. The influence of variations in tile axial force on the spool of the main valve is investigated, and the use of the resultS in the design of systems of the proposed kind is discussed.