The edge, which can encode relational data in graphs and multidimensional data in parallel coordinates plots, is an important visual primitive for encoding data in information visualization research. However, when dat...The edge, which can encode relational data in graphs and multidimensional data in parallel coordinates plots, is an important visual primitive for encoding data in information visualization research. However, when data become very large, visualizations often suffer from visual clutter as thousands of edges can easily overwhelm the display and obscure underlying patterns. Many edge-bundling techniques have been proposed to reduce visual clutter in visualizations. In this survey, we briefly introduce the visual-clutter problem in visualizations. Thereafter, we review the cost-based, geometry-based, and image-based edge-bundling methods for graphs, parallel coordinates, and flow maps. We then describe the various visualization applications that use edge-bundling techniques and discuss the evaluation studies concerning the effectiveness of edge-bundling methods. An edge-bundling taxonomy is proposed at the end of this survey.展开更多
Existing traffic flow prediction frameworks have already achieved enormous success due to large traffic datasets and capability of deep learning models.However,data privacy and security are always a challenge in every...Existing traffic flow prediction frameworks have already achieved enormous success due to large traffic datasets and capability of deep learning models.However,data privacy and security are always a challenge in every field where data need to be uploaded to the cloud.Federated learning(FL)is an emerging trend for distributed training of data.The primary goal of FL is to train an efficient communication model without compromising data privacy.The traffic data have a robust spatio-temporal correlation,but various approaches proposed earlier have not considered spatial correlation of the traffic data.This paper presents FL-based traffic flow prediction with spatio-temporal correlation.This work uses a differential privacy(DP)scheme for privacy preservation of participant's data.To the best of our knowledge,this is the first time that FL is used for vehicular traffic prediction while considering the spatio-temporal correlation of traffic data with DP preservation.The proposed framework trains the data locally at the client-side with DP.It then uses the model aggregation mechanism federated graph convolutional network(FedGCN)at the server-side to find the average of locally trained models.The results of the proposed work show that the FedGCN model accurately predicts the traffic.DP scheme at client-side helps clients to set a budget for privacy loss.展开更多
基金supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (No. LYM11113)the National Natural Science Foundation of China (Nos. 61103055 and 61170204, and 61232012)
文摘The edge, which can encode relational data in graphs and multidimensional data in parallel coordinates plots, is an important visual primitive for encoding data in information visualization research. However, when data become very large, visualizations often suffer from visual clutter as thousands of edges can easily overwhelm the display and obscure underlying patterns. Many edge-bundling techniques have been proposed to reduce visual clutter in visualizations. In this survey, we briefly introduce the visual-clutter problem in visualizations. Thereafter, we review the cost-based, geometry-based, and image-based edge-bundling methods for graphs, parallel coordinates, and flow maps. We then describe the various visualization applications that use edge-bundling techniques and discuss the evaluation studies concerning the effectiveness of edge-bundling methods. An edge-bundling taxonomy is proposed at the end of this survey.
文摘Existing traffic flow prediction frameworks have already achieved enormous success due to large traffic datasets and capability of deep learning models.However,data privacy and security are always a challenge in every field where data need to be uploaded to the cloud.Federated learning(FL)is an emerging trend for distributed training of data.The primary goal of FL is to train an efficient communication model without compromising data privacy.The traffic data have a robust spatio-temporal correlation,but various approaches proposed earlier have not considered spatial correlation of the traffic data.This paper presents FL-based traffic flow prediction with spatio-temporal correlation.This work uses a differential privacy(DP)scheme for privacy preservation of participant's data.To the best of our knowledge,this is the first time that FL is used for vehicular traffic prediction while considering the spatio-temporal correlation of traffic data with DP preservation.The proposed framework trains the data locally at the client-side with DP.It then uses the model aggregation mechanism federated graph convolutional network(FedGCN)at the server-side to find the average of locally trained models.The results of the proposed work show that the FedGCN model accurately predicts the traffic.DP scheme at client-side helps clients to set a budget for privacy loss.