Gas atomization is now an important production technique for Fe-based amorphous alloy powders used in additive manufacturing,particularly selective laser melting,fabricating large-sized Fe-based bulk metallic glasses....Gas atomization is now an important production technique for Fe-based amorphous alloy powders used in additive manufacturing,particularly selective laser melting,fabricating large-sized Fe-based bulk metallic glasses.Using the realizable k-εmodel and discrete phase model theory,the flow dynamics of the gas phase and gas-melt two-phase flow felds in the close-wake condition were investigated to establish the correlation between high gas pressure and powder particle characteristics.The locations of the recirculation zones and the shapes of Mach disks were analyzed in detail for the type of discrete-jet closed-coupled gas atomization nozzle.In the gas-phase flow feld,the vortexes,closed to the Mach disk,are found to be a new deceleration method.In the two-phase flow feld,the shape of Mach disk changes from“S”-shape to“Z”-shape under the impact of the droplet flow.As predicted by the wave model,with the elevation of gas pressure,the size of the particle is found to gradually decrease and its distribution becomes more concentrated.Simulation results were compliant with the Fe-based amorphous alloy powder preparation tests.This study deepens the understanding of the gas pressure impacting particle features via gas atomization,and contributes to technological applications.展开更多
基于流体体积函数(Volume of Fluid,VOF)方法对超声速横向气流中射流破碎过程进行数值模拟,通过与国内外实验对比,验证了该方法捕捉液柱轨迹的准确性和模拟气相流场的可靠性。针对基准工况以及不同动压比工况下超声速横向气流中射流破...基于流体体积函数(Volume of Fluid,VOF)方法对超声速横向气流中射流破碎过程进行数值模拟,通过与国内外实验对比,验证了该方法捕捉液柱轨迹的准确性和模拟气相流场的可靠性。针对基准工况以及不同动压比工况下超声速横向气流中射流破碎过程的计算,结果表明:高频的周期不稳定波在液柱破碎中起主要作用;液体射流与超声速横向来流存在强相互作用,形成弓形激波、分离激波以及激波交错的复杂激波系;当动压比升高时,液柱沿流向破碎点位置几乎无变化,而液柱破碎点位置的穿透深度明显增加。展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFB1100204)the Key Research&Development Plan of Jiangxi Province(No.20192ACB80001)the National Natural Science Foundation of China(Nos.52171163,51701214 and U1908219)。
文摘Gas atomization is now an important production technique for Fe-based amorphous alloy powders used in additive manufacturing,particularly selective laser melting,fabricating large-sized Fe-based bulk metallic glasses.Using the realizable k-εmodel and discrete phase model theory,the flow dynamics of the gas phase and gas-melt two-phase flow felds in the close-wake condition were investigated to establish the correlation between high gas pressure and powder particle characteristics.The locations of the recirculation zones and the shapes of Mach disks were analyzed in detail for the type of discrete-jet closed-coupled gas atomization nozzle.In the gas-phase flow feld,the vortexes,closed to the Mach disk,are found to be a new deceleration method.In the two-phase flow feld,the shape of Mach disk changes from“S”-shape to“Z”-shape under the impact of the droplet flow.As predicted by the wave model,with the elevation of gas pressure,the size of the particle is found to gradually decrease and its distribution becomes more concentrated.Simulation results were compliant with the Fe-based amorphous alloy powder preparation tests.This study deepens the understanding of the gas pressure impacting particle features via gas atomization,and contributes to technological applications.
文摘基于流体体积函数(Volume of Fluid,VOF)方法对超声速横向气流中射流破碎过程进行数值模拟,通过与国内外实验对比,验证了该方法捕捉液柱轨迹的准确性和模拟气相流场的可靠性。针对基准工况以及不同动压比工况下超声速横向气流中射流破碎过程的计算,结果表明:高频的周期不稳定波在液柱破碎中起主要作用;液体射流与超声速横向来流存在强相互作用,形成弓形激波、分离激波以及激波交错的复杂激波系;当动压比升高时,液柱沿流向破碎点位置几乎无变化,而液柱破碎点位置的穿透深度明显增加。