Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to...Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave.展开更多
底鼓是深埋高应力软岩隧道常遇灾害,现有底鼓力学机制忽略了隧道开挖导致的围岩应力释放、应力转移和应力集中现象,仅对初始地应力状态进行了分析。因此,鉴于有限元-离散元耦合数值方法(finite-discrete element method,简称FDEM)在模...底鼓是深埋高应力软岩隧道常遇灾害,现有底鼓力学机制忽略了隧道开挖导致的围岩应力释放、应力转移和应力集中现象,仅对初始地应力状态进行了分析。因此,鉴于有限元-离散元耦合数值方法(finite-discrete element method,简称FDEM)在模拟岩体材料弹塑性连续变形和断裂失效非连续变形以及破碎块体接触方面的优越性,采用FDEM数值模拟方法研究了隧道底板渐进破裂碎胀大变形演化机制,并研究了地应力侧压系数、围岩体抗拉强度和底板位置对底鼓机制的影响。结果表明:(1)隧道底板底鼓力学机制为围岩的破裂碎胀性大变形,可简述为隧道开挖导致径向应力降低、切向应力升高,当升高的切向应力超过岩体强度时便产生共轭剪切破裂并伴随拉伸断裂,最大切向应力不断向深处完整围岩演化直至与岩体强度达到极限平衡状态,剪切裂隙也随之不断向深处扩展,深部块体推挤浅部块体向隧道空间移动并产生大量空隙,发生体积膨胀现象,造成底鼓灾害;(2)根据地应力侧压系数和围岩体抗拉强度的不同,可归纳出5类不同的底板破坏模式,但都可归结为由于最大切向集中应力造成的破裂碎胀性大变形。修正了原有底鼓力学机制未考虑应力释放、转移和集中等应力演化现象的不足,提出了一种新的基于渐进破裂碎胀性大变形的底鼓力学机制,为隧道底鼓机制的研究提供了一种新视角。展开更多
采用耦合的有限元-离散元法(finite-discrete element method, FDEM)研究了圆形隧洞底板大变形灾变机制,并研究了地应力量值、侧压系数、底板位置和隧洞形状对底鼓灾害的影响。结果表明:1)在静水压力状态下,圆形隧洞底板大变形灾变力学...采用耦合的有限元-离散元法(finite-discrete element method, FDEM)研究了圆形隧洞底板大变形灾变机制,并研究了地应力量值、侧压系数、底板位置和隧洞形状对底鼓灾害的影响。结果表明:1)在静水压力状态下,圆形隧洞底板大变形灾变力学机制为隧洞开挖造成围岩径向应力降低和切向应力升高,当超过岩体强度后产生共轭剪切破裂,并伴随拉伸断裂;浅部破裂岩块在深部围岩弹性变形恢复和剪胀效应下发生向隧洞内的翻转大运动,进而引发底板大变形灾害;2)随着地应力量值、侧压系数和底板位置的变化,围岩破坏率、损伤破裂区半径和隧洞表面围岩最大位移量等也发生变化,但仍为破裂碎胀性的大变形;3)传统的滑移线场理论难以解释直墙拱形底板围岩的共轭剪切破裂和深部岩体破裂,采用FDEM和双轴压缩力学模型可成功解释上述现象,为隧洞底鼓大变形灾变机制提供新的研究思路。展开更多
基金grateful to the Key Program of the National Natural Science Foundation of China (Nos. 51134005, 40972196, and 41172263) for financing this research
文摘Floor heave of a roadway is a dynamic phenomenon that often happens in the roadways of coal mines. It seriously affects safe production in the coal mine. Floor heave has long been one of the most difficult problems to be resolved during coal mining. An analysis of floor heave in the soft rock surrounding the roadway, and the factors influencing it, allowed the deformation mechanism in the west wing double track haulage roadway of the Tingnan Coal Mine to be deduced. Three types of floor heave are observed there: intumescent floor heave, extrusion and mobility floor heave, and compound floor heave. Control measures are proposed that have been adopted during a recent repair engineering project. Control of the floor heave in the west wing track haulage roadway was demonstrated. The reliability and rationality of a combined support technology including floor anchors, an inverted arch, and anchoring of both sides was verified by mine pressure data and the field observations. Waterproofing measures were also under-taken to assist in the control of floor heave.
文摘底鼓是深埋高应力软岩隧道常遇灾害,现有底鼓力学机制忽略了隧道开挖导致的围岩应力释放、应力转移和应力集中现象,仅对初始地应力状态进行了分析。因此,鉴于有限元-离散元耦合数值方法(finite-discrete element method,简称FDEM)在模拟岩体材料弹塑性连续变形和断裂失效非连续变形以及破碎块体接触方面的优越性,采用FDEM数值模拟方法研究了隧道底板渐进破裂碎胀大变形演化机制,并研究了地应力侧压系数、围岩体抗拉强度和底板位置对底鼓机制的影响。结果表明:(1)隧道底板底鼓力学机制为围岩的破裂碎胀性大变形,可简述为隧道开挖导致径向应力降低、切向应力升高,当升高的切向应力超过岩体强度时便产生共轭剪切破裂并伴随拉伸断裂,最大切向应力不断向深处完整围岩演化直至与岩体强度达到极限平衡状态,剪切裂隙也随之不断向深处扩展,深部块体推挤浅部块体向隧道空间移动并产生大量空隙,发生体积膨胀现象,造成底鼓灾害;(2)根据地应力侧压系数和围岩体抗拉强度的不同,可归纳出5类不同的底板破坏模式,但都可归结为由于最大切向集中应力造成的破裂碎胀性大变形。修正了原有底鼓力学机制未考虑应力释放、转移和集中等应力演化现象的不足,提出了一种新的基于渐进破裂碎胀性大变形的底鼓力学机制,为隧道底鼓机制的研究提供了一种新视角。
文摘采用耦合的有限元-离散元法(finite-discrete element method, FDEM)研究了圆形隧洞底板大变形灾变机制,并研究了地应力量值、侧压系数、底板位置和隧洞形状对底鼓灾害的影响。结果表明:1)在静水压力状态下,圆形隧洞底板大变形灾变力学机制为隧洞开挖造成围岩径向应力降低和切向应力升高,当超过岩体强度后产生共轭剪切破裂,并伴随拉伸断裂;浅部破裂岩块在深部围岩弹性变形恢复和剪胀效应下发生向隧洞内的翻转大运动,进而引发底板大变形灾害;2)随着地应力量值、侧压系数和底板位置的变化,围岩破坏率、损伤破裂区半径和隧洞表面围岩最大位移量等也发生变化,但仍为破裂碎胀性的大变形;3)传统的滑移线场理论难以解释直墙拱形底板围岩的共轭剪切破裂和深部岩体破裂,采用FDEM和双轴压缩力学模型可成功解释上述现象,为隧洞底鼓大变形灾变机制提供新的研究思路。