Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. B...Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chroma-tography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage re-quirement. MBFW31 was identified as a polysaccharide with molecular weight over 2×106. It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.展开更多
Objective To study the characteristics of a bioflocculant named MBF7 produced by Penicillum strain HHE-P7 and the effects of cultivation conditions on bioflocculant production. Methods The chemical group in the bioflo...Objective To study the characteristics of a bioflocculant named MBF7 produced by Penicillum strain HHE-P7 and the effects of cultivation conditions on bioflocculant production. Methods The chemical group in the bioflocculant molecules was shown by Fourier transform infrared (FTIR) spectra, and the average molecular weight of MBF7 was estimated by gel permeation chromatography. The effects of medium components on bioflocculant production and flocculating activity were studied. Results Phospho-, amino-, hydroxyl, and carboxyl groups were the major fractions of MBF7, and the molecule weight was about 3.0 × 10^5 Da. In addition, the carbon and nitrogen sources favorable for the bioflocculant production were glucose and yeast extract respectively. When the initial pH of the medium was adjusted to 5.0, high flocculant efficiency could be achieved. Conclusion The bioflocculant MBF7 is a new macromolecule with high flocculating efficiency for Kaolin suspension, and could be produced under appropriate culture conditions.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2003CB415002) and the Doctoral Study of the Education Ministry of China (No. 20030027008)
文摘Screening of microorganisms producing flocculating substances was carried out. A strain secreting a large amount of bioflocculant was isolated from wastewater samples collected from the Little Moon River in Beijing. Based on the morphological properties and 16S rDNA sequence analysis, the isolate (designated W31) was classified as Vagococcus sp. A bioflocculant (named MBFW31) produced by W31 was extracted from the culture broth by ethanol precipitation and purified by gel chroma-tography. MBFW31 was heat-stable and had strong flocculating activity in a wide range of pH with relatively low dosage re-quirement. MBFW31 was identified as a polysaccharide with molecular weight over 2×106. It contained neutral sugar and uronic acid as its major and minor components, respectively. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl group in its molecules. The present results suggested that MBFW31 had potential application in wastewater treatment.
文摘Objective To study the characteristics of a bioflocculant named MBF7 produced by Penicillum strain HHE-P7 and the effects of cultivation conditions on bioflocculant production. Methods The chemical group in the bioflocculant molecules was shown by Fourier transform infrared (FTIR) spectra, and the average molecular weight of MBF7 was estimated by gel permeation chromatography. The effects of medium components on bioflocculant production and flocculating activity were studied. Results Phospho-, amino-, hydroxyl, and carboxyl groups were the major fractions of MBF7, and the molecule weight was about 3.0 × 10^5 Da. In addition, the carbon and nitrogen sources favorable for the bioflocculant production were glucose and yeast extract respectively. When the initial pH of the medium was adjusted to 5.0, high flocculant efficiency could be achieved. Conclusion The bioflocculant MBF7 is a new macromolecule with high flocculating efficiency for Kaolin suspension, and could be produced under appropriate culture conditions.