Based on the three-dimensional(3D)basic equations of piezoelectric semiconductors(PSs),we establish a two-dimensional(2D)deformation-polarization-carrier coupling bending model for PS structures,taking flexoelectricit...Based on the three-dimensional(3D)basic equations of piezoelectric semiconductors(PSs),we establish a two-dimensional(2D)deformation-polarization-carrier coupling bending model for PS structures,taking flexoelectricity into consideration.The analytical solutions to classical flexure of a clamped circular PS thin plate are derived.With the derived analytical model,we numerically investigate the distributions of electromechanical fields and the concentration of electrons in the circular PS thin plate under an upward concentrated force.The effect of flexoelectricity on the multi-field coupling responses of the circular PS plate is studied.The obtained results provide theoretical guidance for the design of novel PS devices.展开更多
Flexoelectricity is a symmetry independent electromechanical cou-pling phenomenon that outperforms piezoelectricity at micro and nanoscales due to its size-dependent behavior arising from gradi-ent terms in its consti...Flexoelectricity is a symmetry independent electromechanical cou-pling phenomenon that outperforms piezoelectricity at micro and nanoscales due to its size-dependent behavior arising from gradi-ent terms in its constitutive relations.However,due to this gradient term flexoelectricity,to exhibit itself,requires specially designed geometry or material composition of the dielectric material.First of its kind,the present study put forward a novel strategy of achieving electric field gradient and thereby converse flexoelectri-city,independent of geometry and material composition of the material.The spatial variation of the electric field is established inside the dielectric material,Ba_(0.67)Sr_(0.33)TiO_(3)(BST),by manipulating electrical boundary conditions.Three unique patterns of electrode placement are suggested to achieve this spatial variation.This varying direction of electric field gives rise to electric field gradient,the prerequisite of converse flexoelectricity.A multi-physics cou-pling based theoretical framework is established to solve the flexo-electric actuation by employing isogeometric analysis(IGA).Electromechanically coupled equations of flexoelectricity are solved to obtain the electric field distribution and the resulting displace-ments thereby.The maximum displacements of 0.2 nm and 2.36 nm are obtained with patterns I and II,respectively,while pattern III can yield up to 85 nm of maximum displacement.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12172326,11972319,and 12302210)the Natural Science Foundation of Zhejiang province,China(No.LR21A020002)the specialized research projects of Huanjiang Laboratory.
文摘Based on the three-dimensional(3D)basic equations of piezoelectric semiconductors(PSs),we establish a two-dimensional(2D)deformation-polarization-carrier coupling bending model for PS structures,taking flexoelectricity into consideration.The analytical solutions to classical flexure of a clamped circular PS thin plate are derived.With the derived analytical model,we numerically investigate the distributions of electromechanical fields and the concentration of electrons in the circular PS thin plate under an upward concentrated force.The effect of flexoelectricity on the multi-field coupling responses of the circular PS plate is studied.The obtained results provide theoretical guidance for the design of novel PS devices.
文摘Flexoelectricity is a symmetry independent electromechanical cou-pling phenomenon that outperforms piezoelectricity at micro and nanoscales due to its size-dependent behavior arising from gradi-ent terms in its constitutive relations.However,due to this gradient term flexoelectricity,to exhibit itself,requires specially designed geometry or material composition of the dielectric material.First of its kind,the present study put forward a novel strategy of achieving electric field gradient and thereby converse flexoelectri-city,independent of geometry and material composition of the material.The spatial variation of the electric field is established inside the dielectric material,Ba_(0.67)Sr_(0.33)TiO_(3)(BST),by manipulating electrical boundary conditions.Three unique patterns of electrode placement are suggested to achieve this spatial variation.This varying direction of electric field gives rise to electric field gradient,the prerequisite of converse flexoelectricity.A multi-physics cou-pling based theoretical framework is established to solve the flexo-electric actuation by employing isogeometric analysis(IGA).Electromechanically coupled equations of flexoelectricity are solved to obtain the electric field distribution and the resulting displace-ments thereby.The maximum displacements of 0.2 nm and 2.36 nm are obtained with patterns I and II,respectively,while pattern III can yield up to 85 nm of maximum displacement.