This article puts forward the gray markov prediction model to predict mine gas emission by combining grey system theory and markov chain theory. And GM (1, 1) model is established in the first place for grey data by t...This article puts forward the gray markov prediction model to predict mine gas emission by combining grey system theory and markov chain theory. And GM (1, 1) model is established in the first place for grey data by the model. To eliminate the error, and improve the prediction accuracy of the model, secondary parameters fitting was done on the basis of GM (1, 1) model. And we get second parameter fitting for trend prediction. Then using Markov state transfer probability matrix prediction method to do quadratic fitting for its predictive value, which can improve the prediction precision of the volatile random variables. It proves the prediction results of the model are satisfactory by analyzing history data of gas emission prediction. This conclusion broadens the application scope of grey forecast model and provides a new method for mine gas emission scientific forecast.展开更多
The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to co...The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to collect phasors within a substation. However, limited communication capacity remains the bottleneck that prevents SCADA from transmitting system dynamics. This paper proposes to compress dynamics data with curve fitting in the RTUs and reconstruct the dynamics in the SCADA server for reducing communication demand. Dispatchers in the control center can thus get system dynamics with a delay of several seconds. Simulation result shows that for a power system under disturbance with short-circuit that once occurred and was cleared, the SCADA can approximate the original dynamics with satisfying precision using limited degree polynomial fitting. The approach is highly scalable and adaptable, and can be implemented on existing communication infrastructure with a few software modifications. The approach has extensive application potential.展开更多
文摘This article puts forward the gray markov prediction model to predict mine gas emission by combining grey system theory and markov chain theory. And GM (1, 1) model is established in the first place for grey data by the model. To eliminate the error, and improve the prediction accuracy of the model, secondary parameters fitting was done on the basis of GM (1, 1) model. And we get second parameter fitting for trend prediction. Then using Markov state transfer probability matrix prediction method to do quadratic fitting for its predictive value, which can improve the prediction precision of the volatile random variables. It proves the prediction results of the model are satisfactory by analyzing history data of gas emission prediction. This conclusion broadens the application scope of grey forecast model and provides a new method for mine gas emission scientific forecast.
基金Supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB219701)National Natural Science Foundation of China (Grant No. 50595414)Youth Scientific and Technological Innovation Project of CSEE
文摘The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to collect phasors within a substation. However, limited communication capacity remains the bottleneck that prevents SCADA from transmitting system dynamics. This paper proposes to compress dynamics data with curve fitting in the RTUs and reconstruct the dynamics in the SCADA server for reducing communication demand. Dispatchers in the control center can thus get system dynamics with a delay of several seconds. Simulation result shows that for a power system under disturbance with short-circuit that once occurred and was cleared, the SCADA can approximate the original dynamics with satisfying precision using limited degree polynomial fitting. The approach is highly scalable and adaptable, and can be implemented on existing communication infrastructure with a few software modifications. The approach has extensive application potential.