期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
粒子滤波结合RBF神经网络用于室内定位 被引量:2
1
作者 李丽娜 梁德骕 +1 位作者 王越 尤洪祥 《计算机工程与设计》 北大核心 2017年第9期2509-2514,共6页
基于接收信号强度指示的室内定位方法在实际应用中定位精度不够理想,有待提高,鉴于此,提出一种改进的粒子滤波定位算法。将测距定位问题转化为非线性不相关方程组的最优化问题,根据测距误差大小对适应度值进行加权计算,平衡不同参考节... 基于接收信号强度指示的室内定位方法在实际应用中定位精度不够理想,有待提高,鉴于此,提出一种改进的粒子滤波定位算法。将测距定位问题转化为非线性不相关方程组的最优化问题,根据测距误差大小对适应度值进行加权计算,平衡不同参考节点对定位目标的影响力,在一定程度上提高定位精度。提出利用RBF神经网络对室内传播损耗模型进行训练,进一步提高测距精度,保证定位优化问题模型的准确性。实验结果表明,所提定位算法平均定位误差约为30cm,基本可以满足一般的室内定位精度的要求。 展开更多
关键词 室内定位 接收信号强度指示 粒子滤波 适应度加权计算 RBF神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部