A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO_(2) capture process is recycled to heat the ...A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO_(2) capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper.Based on a 660 MW supercritical coal-fired power plant,the thermal performance,emission performance,and economic performance of the proposed scheme are evaluated.In addition,a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system.The results show that when the biomass mass mixing ratio is 15.40%and the CO_(2) capture rate is 90%,the CO_(2) emission of the coal-fired power plant can reach zero,indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants.The net thermal efficiency decreases by 10.31%,due to the huge energy consumption of the CO_(2) capture unit.Besides,the cost of electricity(COE)and the cost of CO_(2) avoided(COA)of the proposed system are 80.37/MWhand41.63/tCO_(2),respectively.The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO_(2) to 2.40 GJ/tCO_(2),the efficiency penalty is reduced to 8.67%.This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry.展开更多
In this paper,a novel large caliber machine gun was taken as the research object to analyze the floating technique based on the principle of fixed-point constraint and secondary counter-recoil.A rigid-flexible couplin...In this paper,a novel large caliber machine gun was taken as the research object to analyze the floating technique based on the principle of fixed-point constraint and secondary counter-recoil.A rigid-flexible coupling multi-body dynamic model of the large caliber machine gun with muzzle brake based on floating principle was established,in which the influence of soil and human body was taken into account.The dynamic simulation was conducted and then the results were compared with the corresponding experimental data The dynamic characteristics of the machine gun with or without floating technique were analyzed to indicate the influence of floating technique upon the performance of the gun.Furthermore,the rigid-flexible coupling dynamic models with five different firing angles was constructed to study the influence caused by the angles.The results indicated that the floating mechanism could reduce the recoil effectively and improve the operational performance of this novel large caliber machine gun.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51806062)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51821004)the Fundamental Research Funds for the Central Universities(Grant No.2020MS006).
文摘A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO_(2) capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper.Based on a 660 MW supercritical coal-fired power plant,the thermal performance,emission performance,and economic performance of the proposed scheme are evaluated.In addition,a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system.The results show that when the biomass mass mixing ratio is 15.40%and the CO_(2) capture rate is 90%,the CO_(2) emission of the coal-fired power plant can reach zero,indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants.The net thermal efficiency decreases by 10.31%,due to the huge energy consumption of the CO_(2) capture unit.Besides,the cost of electricity(COE)and the cost of CO_(2) avoided(COA)of the proposed system are 80.37/MWhand41.63/tCO_(2),respectively.The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO_(2) to 2.40 GJ/tCO_(2),the efficiency penalty is reduced to 8.67%.This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry.
基金supported by the National Natural Science Foundation of China under Grant No.11802138China Postdoctoral Science Foundation under Grant No.2018T110503the Fundamental Research Funds for the Central Universities under Grant No.30918011302
文摘In this paper,a novel large caliber machine gun was taken as the research object to analyze the floating technique based on the principle of fixed-point constraint and secondary counter-recoil.A rigid-flexible coupling multi-body dynamic model of the large caliber machine gun with muzzle brake based on floating principle was established,in which the influence of soil and human body was taken into account.The dynamic simulation was conducted and then the results were compared with the corresponding experimental data The dynamic characteristics of the machine gun with or without floating technique were analyzed to indicate the influence of floating technique upon the performance of the gun.Furthermore,the rigid-flexible coupling dynamic models with five different firing angles was constructed to study the influence caused by the angles.The results indicated that the floating mechanism could reduce the recoil effectively and improve the operational performance of this novel large caliber machine gun.