Let C be a triangulated category which has Auslander-Reiten triangles, and Ra functorially finite rigid subcategory of C. It is well known that there exist Auslander-Reiten sequences in rood R. In this paper, we give ...Let C be a triangulated category which has Auslander-Reiten triangles, and Ra functorially finite rigid subcategory of C. It is well known that there exist Auslander-Reiten sequences in rood R. In this paper, we give explicitly the relations between the Auslander-Reiten translations, sequences in mod R and the Auslander-Reiten functors, triangles in C, respectively. Furthermore, if T is a cluster-tilting subcategory of C and mod T- is a Frobenius category, we also get the Auslander-Reiten functor and the translation functor of mod T- corresponding to the ones in C. As a consequence, we get that if the quotient of a d-Calabi-Yau triangulated category modulo a cluster tilting subcategory is Probenius, then its stable category is (2d-1)-Calabi-Yau. This result was first proved by Keller and Reiten in the case d= 2, and then by Dugas in the general case, using different methods. 2010 Mathematics Subject Classification: 16G20, 16G70展开更多
文摘Let C be a triangulated category which has Auslander-Reiten triangles, and Ra functorially finite rigid subcategory of C. It is well known that there exist Auslander-Reiten sequences in rood R. In this paper, we give explicitly the relations between the Auslander-Reiten translations, sequences in mod R and the Auslander-Reiten functors, triangles in C, respectively. Furthermore, if T is a cluster-tilting subcategory of C and mod T- is a Frobenius category, we also get the Auslander-Reiten functor and the translation functor of mod T- corresponding to the ones in C. As a consequence, we get that if the quotient of a d-Calabi-Yau triangulated category modulo a cluster tilting subcategory is Probenius, then its stable category is (2d-1)-Calabi-Yau. This result was first proved by Keller and Reiten in the case d= 2, and then by Dugas in the general case, using different methods. 2010 Mathematics Subject Classification: 16G20, 16G70