Focuses on the formulation of a number of least-squares mixed finite element schemes to solve the initial boundary value problem of a nonlinear parabolic partial differential equation. Convergence analysis; Informatio...Focuses on the formulation of a number of least-squares mixed finite element schemes to solve the initial boundary value problem of a nonlinear parabolic partial differential equation. Convergence analysis; Information on the least-squares mixed element schemes for nonlinear parabolic problem.展开更多
In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ...In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.展开更多
Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. ...Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.展开更多
Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estima...Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.展开更多
This paper makes some mathematical analyses for the finite point method based on directional difference. By virtue of the explicit expressions of numerical formulae using only five neighboring points for computing fir...This paper makes some mathematical analyses for the finite point method based on directional difference. By virtue of the explicit expressions of numerical formulae using only five neighboring points for computing first-order and second-order directional differ- entials, a new methodology is presented to discretize the Laplacian operator defined on 2D scattered point distributions. Some sufficient conditions with very weak limitations are obtained, under which the resulted schemes are positive schemes. As a consequence, the discrete maximum principle is proved, and the first order convergent result of O(h) is achieved for the nodal solutions defined on scattered point distributions, which can be raised up to O(h2) on uniform point distributions.展开更多
The literature model studied in this article describes bubble formation and growth in a highly viscous polymer liquid with support of a gaseous matter dispersed under pressure before foaming. The foam growth is induce...The literature model studied in this article describes bubble formation and growth in a highly viscous polymer liquid with support of a gaseous matter dispersed under pressure before foaming. The foam growth is induced by the application of vacuum and mass transport of volatile components dissolved in the polymer liquid. Based on this literature model, aeration processes are calculated for intermediate viscosity and low viscosity biological systems, as they are of interest for biomatter foams, in particular for food foams in industrial processes. At the end of this article, the numerical results are presented and discussed.展开更多
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r...For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.展开更多
In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. Th...In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.展开更多
The incompressible Navier Stokes equations are solved via variables of vorticity and velocity. Firstly, a rigorous variational framework with the equivalence between the velocity pressure and the vorticity velocity fo...The incompressible Navier Stokes equations are solved via variables of vorticity and velocity. Firstly, a rigorous variational framework with the equivalence between the velocity pressure and the vorticity velocity formulations is presented in a Lipschitz domain. Next, a class of Galerkin finite element approximations of the corresponding variational form is introduced, and a convergence analysis is given for the Stokes problem. Finally, an iterative finite element solver for the Navier Stokes problem is proposed.展开更多
基金Major State Basic Research Program of People's Republic of China(G1999032803).
文摘Focuses on the formulation of a number of least-squares mixed finite element schemes to solve the initial boundary value problem of a nonlinear parabolic partial differential equation. Convergence analysis; Information on the least-squares mixed element schemes for nonlinear parabolic problem.
基金supported by the Special Funds for Major State Basic Research Project (No. 2005CB321701)
文摘In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.
文摘Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.
基金Supported by by the National Science Foundation for Young Scholars of China(11101431)the Fundamental Research Funds for the Central Universities (12CX04082A,10CX04041A)Shandong Province Natural Science Foundation of China(ZR2010AL020)
文摘Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.
基金This project was supported by the National Natural Science Foundation of China (11371066, 11372050), and the Foundation of National Key Laboratory of Science and Technology Computation Physics.
文摘This paper makes some mathematical analyses for the finite point method based on directional difference. By virtue of the explicit expressions of numerical formulae using only five neighboring points for computing first-order and second-order directional differ- entials, a new methodology is presented to discretize the Laplacian operator defined on 2D scattered point distributions. Some sufficient conditions with very weak limitations are obtained, under which the resulted schemes are positive schemes. As a consequence, the discrete maximum principle is proved, and the first order convergent result of O(h) is achieved for the nodal solutions defined on scattered point distributions, which can be raised up to O(h2) on uniform point distributions.
文摘The literature model studied in this article describes bubble formation and growth in a highly viscous polymer liquid with support of a gaseous matter dispersed under pressure before foaming. The foam growth is induced by the application of vacuum and mass transport of volatile components dissolved in the polymer liquid. Based on this literature model, aeration processes are calculated for intermediate viscosity and low viscosity biological systems, as they are of interest for biomatter foams, in particular for food foams in industrial processes. At the end of this article, the numerical results are presented and discussed.
基金the Major State Basic Research Program of China(19990328)NNSF of China(19871051,19972039) the Doctorate Foundation of the State Education Commission
文摘For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.
文摘In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.
文摘The incompressible Navier Stokes equations are solved via variables of vorticity and velocity. Firstly, a rigorous variational framework with the equivalence between the velocity pressure and the vorticity velocity formulations is presented in a Lipschitz domain. Next, a class of Galerkin finite element approximations of the corresponding variational form is introduced, and a convergence analysis is given for the Stokes problem. Finally, an iterative finite element solver for the Navier Stokes problem is proposed.