The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique...The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.展开更多
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis...Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61373121 and 61328205)Program for Sichuan Provincial Science Fund for Distinguished Young Scholars(No.13QNJJ0149)+1 种基金the Fundamental Research Funds for the Central UniversitiesChina Scholarship Council(No.201507000032)
文摘The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively.
基金supported by National Basic Research Program of China (973 Program) (No. 2015CB352502)National Nature Science Foundation of China (No. 61573026)Beijing Nature Science Foundation (No. L172037)
文摘Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification.