期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 被引量:42
1
作者 Bo Zhao Jiashi Feng +1 位作者 Xiao Wu Shuicheng Yan 《International Journal of Automation and computing》 EI CSCD 2017年第2期119-135,共17页
The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning technique... The deep learning technology has shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based, ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based approaches for semantic segmentation are introduced respectively. 展开更多
关键词 Deep learning fine-grained image classification semantic segmentation convolutional neural network (CNN) recurrentneural network (RNN)
原文传递
基于新型空间注意力机制和迁移学习的垃圾图像分类算法 被引量:25
2
作者 高明 陈玉涵 +2 位作者 张泽慧 冯雨 樊卫国 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2021年第2期498-512,共15页
随着我国各级政府大力推动垃圾强制分类,分类回收各环节中实现标准化、自动化的垃圾分类识别需要适合云端部署的高准确率、低延时要求的细粒度图像分类模型.本文发挥深度迁移学习的优势建立了一套端到端的迁移学习网络架构GANet (garbag... 随着我国各级政府大力推动垃圾强制分类,分类回收各环节中实现标准化、自动化的垃圾分类识别需要适合云端部署的高准确率、低延时要求的细粒度图像分类模型.本文发挥深度迁移学习的优势建立了一套端到端的迁移学习网络架构GANet (garbage neural network);针对垃圾分类中类别易混淆、背景干扰等挑战,提出一种新型的像素级空间注意力机制PSATT (pixel-level spatial attention).为克服类别多和样本不平衡挑战,提出使用标签平滑正则化损失函数;为改善收敛速度以及模型稳定性与泛化性,提出了阶梯形OneCycle学习率控制方法,并给出了结合Rectified Adam (RAdam)优化方法和权重平滑处理技术的组合使用策略.实验使用了"华为云人工智能大赛.垃圾分类挑战杯"提供的按照深圳市垃圾分类标准标注的训练数据,验证了GANet在垃圾分类问题中的显著效果,获得了全国二等奖(第2名);同时,提出的PSATT机制优于对比方法,且在不同主干网络架构上均得到了提升,具有良好的通用性.本文提出的GANet架构、PSATT机制和训练策略不仅具有重要的工程参考价值,也具有较好的学术价值. 展开更多
关键词 注意力机制 迁移学习 垃圾分类 细粒度图像分类
原文传递
基于集成迁移学习的细粒度图像分类算法 被引量:17
3
作者 吴建 许镜 丁韬 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2020年第3期452-458,共7页
针对现有的大部分细粒度图像分类算法都忽略了局部定位和局部特征学习是相互关联的问题,提出了一种基于集成迁移学习的细粒度图像分类算法。该算法的分类网络由区域检测分类和多尺度特征组合组成。区域检测分类网络通过类别激活映射(cla... 针对现有的大部分细粒度图像分类算法都忽略了局部定位和局部特征学习是相互关联的问题,提出了一种基于集成迁移学习的细粒度图像分类算法。该算法的分类网络由区域检测分类和多尺度特征组合组成。区域检测分类网络通过类别激活映射(class activation mapping,CAM)方法获得局部区域,以相互强化学习的方式,从定位的局部区域中学习图像的细微特征,组合各局部区域特征作为最终的特征表示进行分类。该细粒度图像分类网络在训练过程中结合提出的集成迁移学习方法,基于迁移学习,通过随机加权平均方法集成局部训练模型,从而获得更好的最终分类模型。使用该算法在数据集CUB-200-2011和Stanford Cars上进行实验,结果表明,与原有大部分算法对比,该算法具有更优的细粒度分类结果。 展开更多
关键词 细粒度图像分类 集成迁移学习 类别激活映射 随机加权平均
下载PDF
基于Xception的细粒度图像分类 被引量:16
4
作者 张潜 桑军 +3 位作者 吴伟群 吴中元 向宏 蔡斌 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第5期85-91,共7页
细粒度图像分类是对传统图像分类的子类进行更加细致的划分,实现对物体更为精细的识别,它是计算机视觉领域的一个极具挑战的研究方向。通过对现有的细粒度图像分类算法和Xception模型的分析,提出将Xception模型应用于细粒度图像分类任... 细粒度图像分类是对传统图像分类的子类进行更加细致的划分,实现对物体更为精细的识别,它是计算机视觉领域的一个极具挑战的研究方向。通过对现有的细粒度图像分类算法和Xception模型的分析,提出将Xception模型应用于细粒度图像分类任务。用ImageNet分类的预训练模型参数作为卷积层的初始化,然后对图像进行缩放、数据类型转换、数值归一化处理,以及对分类器参数随机初始化,最后对网络进行微调。在公开的细粒度图像库CUB200-2011、Flower102和Stanford Dogs上进行实验验证,得到的平均分类正确率为71.0%、89.9%和91.4%。实验结果表明Xception模型在细粒度图像分类上有很好的泛化能力。由于不需要物体标注框和部位标注点等额外人工标注信息,Xception模型用在细粒度图像分类上具有较好的通用性和鲁棒性。 展开更多
关键词 细粒度图像分类 Xception 卷积神经网络 深度学习
下载PDF
YOLOv3和双线性特征融合的细粒度图像分类 被引量:13
5
作者 闫子旭 侯志强 +3 位作者 熊磊 刘晓义 余旺盛 马素刚 《中国图象图形学报》 CSCD 北大核心 2021年第4期847-856,共10页
目的细粒度图像分类是计算机视觉领域具有挑战性的课题,目的是将一个大的类别分为更详细的子类别,在工业和学术方面都有着十分广泛的研究需求。为了改善细粒度图像分类过程中不相关背景干扰和类别差异特征难以提取的问题,提出了一种将... 目的细粒度图像分类是计算机视觉领域具有挑战性的课题,目的是将一个大的类别分为更详细的子类别,在工业和学术方面都有着十分广泛的研究需求。为了改善细粒度图像分类过程中不相关背景干扰和类别差异特征难以提取的问题,提出了一种将目标检测方法 YOLOv3(you only look once)和双线性融合网络相结合的细粒度分类优化算法,以此提高细粒度图像分类的性能。方法利用重新训练过的目标检测算法YOLOv3粗略确定目标在图像中的位置;使用背景抑制方法消除目标以外的信息干扰;利用融合不同通道、不同层级卷积层特征的方法对经典的细粒度分类算法双线性卷积神经网络(bilinear convolutional neural network,B-CNN)进行改进,优化分类性能,通过融合双线性网络中不同卷积层的特征向量,得到更加丰富的互补信息,从而提高细粒度分类精度。结果实验结果表明,在CUB-200-2011 (Caltech-UCSD Birds-200-2011)、Cars196和Aircrafts100数据集中,本文算法的分类准确率分别为86.3%、92.8%和89.0%,比经典的B-CNN细粒度分类算法分别提高了2.2%、1.5%和4.9%,验证了本文算法的有效性。同时,与已有细粒度图像分类算法相比也表现出一定的优势。结论改进算法使用YOLOv3有效滤除了大量无关背景,通过特征融合方法来改进双线性卷积神经分类网络,丰富特征信息,使分类的结果更加精准。 展开更多
关键词 细粒度图像分类 目标检测 背景抑制 特征融合 双线性卷积神经网络(B-CNN)
原文传递
基于语义DCNN特征融合的细粒度车型识别模型 被引量:12
6
作者 杨娟 曹浩宇 +1 位作者 汪荣贵 薛丽霞 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第1期141-157,共17页
针对深度卷积神经网络模型缺乏对语义信息的表征能力,而细粒度视觉识别中种类间视觉差异微小且多集中在关键的语义部位的问题,提出基于语义信息融合的深度卷积神经网络模型及细粒度车型识别模型.该模型由定位网络和识别网络组成,通过定... 针对深度卷积神经网络模型缺乏对语义信息的表征能力,而细粒度视觉识别中种类间视觉差异微小且多集中在关键的语义部位的问题,提出基于语义信息融合的深度卷积神经网络模型及细粒度车型识别模型.该模型由定位网络和识别网络组成,通过定位网络FasterRCNN获取车辆目标及各语义部件的具体位置;借助识别网络提取目标车辆及各语义部件的特征,再使用小核卷积实现特征拼接和融合;最后经过深层神经网络得到最终识别结果.实验结果表明,文中模型在斯坦福BMW-10数据集的识别准确率为78.74%,高于VGG网络13.39%;在斯坦福cars-197数据集的识别准确率为85.94%,其迁移学习模型在BMVC car-types数据集的识别准确率为98.27%,比该数据集目前最好的识别效果提高3.77%;该模型避免了细粒度车型识别对于车辆目标及语义部件位置的依赖,并具有较高的识别准确率及通用性. 展开更多
关键词 车型识别 细粒度车型识别 卷积神经网络 深度学习 细粒度分类 图像分类
下载PDF
深度学习在细粒度图像识别中的应用综述 被引量:12
7
作者 张志林 李玉鑑 +1 位作者 刘兆英 张婷 《北京工业大学学报》 CAS CSCD 北大核心 2021年第8期942-953,共12页
深度学习技术在多种视觉任务中表现出优异的性能,特别是深度学习技术的发展大大促进了细粒度图像识别任务的进步.细粒度图像识别的目的在于正确识别子对象类别,例如鸟类中的不同子类别.由于细粒度图像数据通常需要具有专家知识才能够进... 深度学习技术在多种视觉任务中表现出优异的性能,特别是深度学习技术的发展大大促进了细粒度图像识别任务的进步.细粒度图像识别的目的在于正确识别子对象类别,例如鸟类中的不同子类别.由于细粒度图像数据通常需要具有专家知识才能够进行有效识别与标注,获取难度比较高,同时,由于细粒度类别直接具有小的类间差异性和大的类内差异性特点,需要模型能够捕捉到细微的有区分性的局部特征,这两方面原因导致这项任务极具挑战性.首先,介绍了深度学习技术的重要发展历程、细粒度图像识别任务的特点和挑战.随后,介绍了基于深度学习的细粒度识别方法的3种类型,包括基于定位-分类子网络的方法、基于端到端的特征编码方法和利用外部辅助信息的细粒度图像识别方法,并选择有代表性的工作给予了详细的介绍.最后,在常用数据集上比较了相关工作的性能,对细粒度图像识别任务进行了总结和展望. 展开更多
关键词 细粒度图像识别 定位-分类 局部特征 端到端 特征编码 辅助信息
下载PDF
面向细粒度图像分类的双线性残差注意力网络 被引量:11
8
作者 王阳 刘立波 《激光与光电子学进展》 CSCD 北大核心 2020年第12期163-172,共10页
细粒度图像之间具有高度相似的外观,其差异往往体现在局部区域,提取具有判别性的局部特征成为影响细粒度分类性能的关键.引入注意力机制的方法是解决上述问题的常见策略,为此,在双线性卷积神经网络模型的基础上,提出一种改进的双线性残... 细粒度图像之间具有高度相似的外观,其差异往往体现在局部区域,提取具有判别性的局部特征成为影响细粒度分类性能的关键.引入注意力机制的方法是解决上述问题的常见策略,为此,在双线性卷积神经网络模型的基础上,提出一种改进的双线性残差注意力网络:将原模型的特征函数替换为特征提取能力更强的深度残差网络,并在残差单元之间分别添加通道注意力和空间注意力模块,以获取不同维度、更为丰富的注意力特征.在3个细粒度图像数据集CUB-200-2011、StanfordDogs和Stanford Cars上进行消融和对比实验,改进后模型的分类准确率分别达到87.2%、89.2%和92.5%.实验结果表明,相较原模型及其他多个主流细粒度分类算法,本文方法能取得更好的分类结果. 展开更多
关键词 图像处理 细粒度图像分类 注意力机制 残差网络 通道注意力 空间注意力
原文传递
基于ResNet50与迁移学习的轮毂识别 被引量:10
9
作者 张典范 杨镇豪 程淑红 《计量学报》 CSCD 北大核心 2022年第11期1412-1417,共6页
针对人工进行轮毂分拣存在的误识别问题,采用一种基于ResNet50与迁移学习的神经网络模型来识别汽车轮毂。把预训练模型参数迁移到ResNet50卷积神经网络中,修改原网络的输出层,构建基于ResNet50的迁移学习模型,通过进一步训练轮毂数据集... 针对人工进行轮毂分拣存在的误识别问题,采用一种基于ResNet50与迁移学习的神经网络模型来识别汽车轮毂。把预训练模型参数迁移到ResNet50卷积神经网络中,修改原网络的输出层,构建基于ResNet50的迁移学习模型,通过进一步训练轮毂数据集来微调模型参数,提取轮毂的细粒度特征。通过对比AlexNet、VGG11、VGG16与ResNet50模型在未使用微调、使用微调和冻结不同数量卷积层参数时的训练效率、准确率,证明ResNet50迁移学模型在冻结前7个Bottleneck残差块参数时不仅能缩短训练时间,并能在相同迭代周期下取得更高的准确率。在该冻结策略下训练生成TL-ResNet50迁移学习模型,分别对8种轮毂进行预测,得出每种轮毂的平均准确率达到99%以上。 展开更多
关键词 计量学 轮毂识别 残差网络 迁移学习 细粒度图像分类
下载PDF
多尺度特征融合的细粒度图像分类 被引量:10
10
作者 李思瑶 刘宇红 张荣芬 《激光与光电子学进展》 CSCD 北大核心 2020年第12期83-89,共7页
提出了一种基于多尺度特征融合的细粒度图像分类方法.通过运用特征金字塔结构对不同层次的特征进行尺度变换,再进行信息融合;之后筛选其中包含细节特征最多的前三个区域图,将其与图像的全局特征共同作用以判断图片所属的子类类别.在公... 提出了一种基于多尺度特征融合的细粒度图像分类方法.通过运用特征金字塔结构对不同层次的特征进行尺度变换,再进行信息融合;之后筛选其中包含细节特征最多的前三个区域图,将其与图像的全局特征共同作用以判断图片所属的子类类别.在公开的细粒度数据集CUB-200-2011、Stanford Dogs上进行了实验,得到的分类精度分别为85.7%和83.5%.实验结果表明该方法对于精细化物体分类具有一定的优越性. 展开更多
关键词 图像处理 细粒度图像分类 多尺度特征 特征金字塔 卷积神经网络
原文传递
基于注意力机制的细粒度图像分类 被引量:6
11
作者 朱丽 王新鹏 +2 位作者 付海涛 冯宇轩 张竞吉 《吉林大学学报(理学版)》 CAS 北大核心 2023年第2期371-376,共6页
针对细粒度图像分类中数据分布具有小型、非均匀和不易察觉类间差异的特征,提出一种基于注意力机制的细粒度图像分类模型.首先通过引入双路通道注意力与残差网络融合对图像进行初步特征提取,然后应用多头自注意力机制,达到提取深度特征... 针对细粒度图像分类中数据分布具有小型、非均匀和不易察觉类间差异的特征,提出一种基于注意力机制的细粒度图像分类模型.首先通过引入双路通道注意力与残差网络融合对图像进行初步特征提取,然后应用多头自注意力机制,达到提取深度特征数据之间细粒度关系的目的,再结合交叉熵损失和中心损失设计损失函数度量模型的训练.实验结果表明,该模型在两个标准数据集102 Category Flower和CUB200-2011上的测试准确率分别达94.42%和89.43%,与其他主流分类模型相比分类效果更好. 展开更多
关键词 细粒度图像分类 注意力机制 残差网络
下载PDF
聚焦——识别网络架构的细粒度图像分类 被引量:10
12
作者 王永雄 张晓兵 《中国图象图形学报》 CSCD 北大核心 2019年第4期493-502,共10页
目的细粒度图像分类是指对一个大类别进行更细致的子类划分,如区分鸟的种类、车的品牌款式、狗的品种等。针对细粒度图像分类中的无关信息太多和背景干扰问题,本文利用深度卷积网络构建了细粒度图像聚焦—识别的联合学习框架,通过去除... 目的细粒度图像分类是指对一个大类别进行更细致的子类划分,如区分鸟的种类、车的品牌款式、狗的品种等。针对细粒度图像分类中的无关信息太多和背景干扰问题,本文利用深度卷积网络构建了细粒度图像聚焦—识别的联合学习框架,通过去除背景、突出待识别目标、自动定位有区分度的区域,从而提高细粒度图像分类识别率。方法首先基于Yolov2(youonly look once v2)的网络快速检测出目标物体,消除背景干扰和无关信息对分类结果的影响,实现聚焦判别性区域,之后将检测到的物体(即Yolov2的输出)输入双线性卷积神经网络进行训练和分类。此网络框架可以实现端到端的训练,且只依赖于类别标注信息,而无需借助其他的人工标注信息。结果在细粒度图像库CUB-200-2011、Cars196和Aircrafts100上进行实验验证,本文模型的分类精度分别达到84. 5%、92%和88. 4%,与同类型分类算法得到的最高分类精度相比,准确度分别提升了0. 4%、0. 7%和3. 9%,比使用两个相同D(dence)-Net网络的方法分别高出0. 5%、1. 4%和4. 5%。结论使用聚焦—识别深度学习框架提取有区分度的区域对细粒度图像分类有积极作用,能够滤除大部分对细粒度图像分类没有贡献的区域,使得网络能够学习到更多有利于细粒度图像分类的特征,从而降低背景干扰对分类结果的影响,提高模型的识别率。 展开更多
关键词 细粒度图像分类 目标检测 双线性卷积神经网络 聚焦—识别框架 区分度
原文传递
基于卷积神经网络的多肉植物细粒度图像分类 被引量:8
13
作者 黄嘉宝 朱永华 +1 位作者 周霁婷 高文靖 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期283-291,共9页
多肉植物分类是植物栽培管理中的一项重要任务,通常需使用大型数据集和领域独有的特性.由于没有现成的多肉植物数据集,需收集大量的图片自制数据集.研究了多肉植物的细粒度图像分类.为了识别不同视角、背景、光效和成长阶段的多肉植物,... 多肉植物分类是植物栽培管理中的一项重要任务,通常需使用大型数据集和领域独有的特性.由于没有现成的多肉植物数据集,需收集大量的图片自制数据集.研究了多肉植物的细粒度图像分类.为了识别不同视角、背景、光效和成长阶段的多肉植物,对卷积神经网络AlexNet和GoogLeNet的最后三层进行微调,对原创数据集进行了强监督分类和弱监督分类的测试、训练.实验结果表明,微调GoogLeNet的强监督分类达到了最佳效果,精准率为96.7%. 展开更多
关键词 细粒度图像分类 强监督分类 弱监督分类 卷积神经网络 AlexNet GoogLeNet 微调
下载PDF
基于跨层精简双线性网络的细粒度鸟类识别 被引量:9
14
作者 蓝洁 周欣 +2 位作者 何小海 滕奇志 卿粼波 《科学技术与工程》 北大核心 2019年第36期240-246,共7页
细微的类间差异和显著的类内变化使得细粒度图像分类极具挑战性。为了对鸟类图像进行细粒度识别,提出一种基于跨层精简双线性池化的深度卷积神经网络模型。首先,根据Tensor Sketch算法计算出多组来自不同卷积层的精简双线性特征向量;其... 细微的类间差异和显著的类内变化使得细粒度图像分类极具挑战性。为了对鸟类图像进行细粒度识别,提出一种基于跨层精简双线性池化的深度卷积神经网络模型。首先,根据Tensor Sketch算法计算出多组来自不同卷积层的精简双线性特征向量;其次,将归一化后的特征向量级联送至softmax分类器;最后,引入成对混淆对交叉熵损失函数进行正则化以优化网络。提出的模型无需额外的部件标注,可进行端到端的训练。结果表明,在公开的CUB-200—2011鸟类数据集上,该模型取得了较好的性能,识别正确率为86.6%,较BCNN提高2.5%。与多个先进细粒度分类算法的对比,验证了提出模型的有效性和优越性。 展开更多
关键词 鸟类识别 精简双线性变换 跨层特征融合 成对混淆 细粒度图像分类
下载PDF
基于改进Transformer的细粒度图像分类模型 被引量:4
15
作者 田战胜 刘立波 《激光与光电子学进展》 CSCD 北大核心 2023年第2期161-168,共8页
细粒度图像具有不同子类间差异小、相同子类内差异大的特点。现有网络模型在处理过程中存在特征提取能力不足、特征表示冗余和归纳偏置能力弱等问题,因此提出一种改进的Transformer图像分类模型。首先,利用外部注意力取代原Transformer... 细粒度图像具有不同子类间差异小、相同子类内差异大的特点。现有网络模型在处理过程中存在特征提取能力不足、特征表示冗余和归纳偏置能力弱等问题,因此提出一种改进的Transformer图像分类模型。首先,利用外部注意力取代原Transformer模型中的自注意力,通过捕获样本间相关性提升模型的特征提取能力;其次,引入特征选择模块筛选区分性特征,去除冗余信息,加强特征表示能力;最后,引入融合的多元损失,增强模型归纳偏置和区分不同子类、归并相同子类的能力。实验结果表明,所提方法在CUB-200-2011、Stanford Dogs和Stanford Cars三个细粒度图像数据集上的分类精度分别达89.8%、90.2%和94.7%,优于多个主流的细粒度图像分类方法,分类结果较好。 展开更多
关键词 细粒度图像分类 TRANSFORMER 外部注意力 特征选择 多元损失
原文传递
基于ConvNeXt热图定位和对比学习的细粒度图像分类研究 被引量:4
16
作者 郑世杰 王高才 《计算机科学》 CSCD 北大核心 2023年第10期119-125,共7页
针对细粒度图像分类中高类内差异和低类间差异的挑战,提出一种以ConvNeXt网络为主干,使用GradCAM热图进行裁剪和注意力擦除的多分支细粒度图像分类方法。该方法利用GradCAM通过梯度回流得到网络的注意力热图,定位到具有判别性特征的区域... 针对细粒度图像分类中高类内差异和低类间差异的挑战,提出一种以ConvNeXt网络为主干,使用GradCAM热图进行裁剪和注意力擦除的多分支细粒度图像分类方法。该方法利用GradCAM通过梯度回流得到网络的注意力热图,定位到具有判别性特征的区域,裁剪并放大该区域,使网络关注局部更深层次的特征。同时引入有监督的对比学习,扩大类间差异,减小类内差异。最后进行热图注意力擦除操作,使网络在关注最具判别性特征的前提下,也能关注其他对分类有用的区域。所提方法在CUB-200-2011,Stanford Cars,FGVC Aircraft和Stanford Dogs数据集上的分类准确率分别达到了91.8%,94.9%,94.0%,94.4%,优于多种主流的细粒度图像分类方法,并且在CUB-200-2011和Stanford Dogs数据集上分别达到了top-3和top-1的分类准确率。 展开更多
关键词 细粒度图像分类 注意力 有监督对比学习 热图 多分支
下载PDF
多区域注意力的细粒度图像分类网络 被引量:2
17
作者 白尚旺 王梦瑶 +1 位作者 胡静 陈志泊 《计算机工程》 CSCD 北大核心 2024年第1期271-278,共8页
目前细粒度图像分类的难点在于如何精准定位图像中高度可辨的局部区域以及其他辅助判别特征。提出一种多区域注意力的细粒度图像分类网络来解决这个问题。首先使用Inception-V3对图像特征进行提取,通过重复使用注意力擦除的方法使模型... 目前细粒度图像分类的难点在于如何精准定位图像中高度可辨的局部区域以及其他辅助判别特征。提出一种多区域注意力的细粒度图像分类网络来解决这个问题。首先使用Inception-V3对图像特征进行提取,通过重复使用注意力擦除的方法使模型关注次要特征;然后通过背景去除以及上采样的方法获取图像更精准的局部图像,对提取到的局部特征进行位置统计,并以矩形框的方式获取图像整体,减少细节信息丢失;最后对局部与整体图像进行更加细致的学习。此外,设计联合损失函数,通过动态平衡难易样本和缩小类内差距的方法改善模型的识别效果。实验结果表明,该方法在公开的细粒度图像数据集CUB-200-2011、Stanford-Cars和FGVC-Aircraft上的准确率分别达到89.2%、94.8%、94.0%,相较于对比方法性能更优。 展开更多
关键词 多区域注意力 细粒度图像分类 擦除策略 联合损失 深度学习 卷积神经网络
下载PDF
Zero-shot Fine-grained Classification by Deep Feature Learning with Semantics 被引量:6
18
作者 Ao-Xue Li Ke-Xin Zhang Li-Wei Wang 《International Journal of Automation and computing》 EI CSCD 2019年第5期563-574,共12页
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning dis... Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task for two main reasons: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e., zeroshot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot finegrained classification. 展开更多
关键词 fine-grained image classification zero-shot LEARNING DEEP FEATURE LEARNING domain adaptation semantic graph
原文传递
结合注意力与双线性网络的细粒度图像分类 被引量:7
19
作者 李昆仑 王怡辉 +1 位作者 陈栋 王珺 《小型微型计算机系统》 CSCD 北大核心 2021年第5期1071-1076,共6页
如何对识别物体进行精确定位并提取更具有表达力的特征,是细粒度图像分类算法的核心问题之一.为此,本文提出了一种基于注意力机制的双线性卷积神经网络细粒度图像分类算法(BAM B-CNN),主要工作如下:1)通过VGG-16网络获得原始图像的激活... 如何对识别物体进行精确定位并提取更具有表达力的特征,是细粒度图像分类算法的核心问题之一.为此,本文提出了一种基于注意力机制的双线性卷积神经网络细粒度图像分类算法(BAM B-CNN),主要工作如下:1)通过VGG-16网络获得原始图像的激活映射图,选取大于平均值的最大联通区域作为物体图像;2)使用区域建议网络(RPN)提取候选区域,结合部件注意力模型将候选区域分为k组,以各组评分最高的候选区域作为部件图像;3)在双线性网络中引入通道注意力模块,学习通道间的非线性关系,提高关键特征的表达力;4)使用分类模型结合不同层次特征的优点,提高分类精度.理论分析和试验验证均验证了所提算法的有效性. 展开更多
关键词 细粒度图像分类 深度学习 双线性池化 二级注意力
下载PDF
基于注意力特征融合的SqueezeNet细粒度图像分类模型 被引量:7
20
作者 李明悦 何乐生 +1 位作者 雷晨 龚友梅 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期868-876,共9页
针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级... 针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型.通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级卷积神经网络,对其微调后在公开的细粒度图像数据集上进行验证,经比较后选择了模型性能最佳的SqueezeNet作为图像的特征提取器;然后将两个具有注意力机制的卷积模块嵌入至SqueezeNet网络的每个Fire模块;接着提取出改进后的SqueezeNet的中间层特征进行双线性融合形成新的注意力特征图,与网络的全局特征再融合后分类;最后通过实验对比和可视化分析,网络嵌入Convolution Block Attention Module(CBAM)模块的分类准确率在鸟类、汽车、飞机数据集上依次提高了8.96%、4.89%和5.85%,嵌入Squeeze-and-Excitation(SE)模块的分类准确率依次提高了9.81%、4.52%和2.30%,且新模型在参数量、运行效率等方面比现有算法更具优势. 展开更多
关键词 细粒度图像分类 轻量级卷积神经网络 SqueezeNet 注意力机制 Convolution Block Attention Module(CBAM) Squeeze-and-Excitation(SE) 特征融合
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部