A series of dye-sensitized solar cells based on ZnO-modified TiO2 nano-porous films have been prepared. The current-voltage characteristics of the cells show that the ZnO-modification can improve the open-circuit volt...A series of dye-sensitized solar cells based on ZnO-modified TiO2 nano-porous films have been prepared. The current-voltage characteristics of the cells show that the ZnO-modification can improve the open-circuit voltage and the fill factor but can decrease the short-circuit current. Dark current and transient photovoltage measurements are used to study the back reaction. It is indicated that the recombination process is suppressed by blocking the hole transporting from the nano-porous TiO2 since the surface of the semiconductor is almost fully covered with ZnO as a barrier layer.展开更多
Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integr...Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.展开更多
The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on...The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.展开更多
Smart construction of battery-type anodes with high rate and good mechanical properties is significant for advanced sodium ion capacitors(SICs).Herein,a flexible film consisting of MoO_(2) subnanoclusters encapsulated...Smart construction of battery-type anodes with high rate and good mechanical properties is significant for advanced sodium ion capacitors(SICs).Herein,a flexible film consisting of MoO_(2) subnanoclusters encapsulated in nitrogen-doped carbon nanofibers(MoO_(2) SCs@N-CNFs)is designed and synthesized via electrospinning toward SICs as anodes.The strong N-Mo interaction guarantees the stable yet uniform dispersion of high loading MoO_(2) SCs(≈40 wt.%)in the flexible carbonaceous substrate.The sub-nanoscale effect of SCs restrains electrode pulverization and improves the Na+diffusion kinetics,rendering better pseudocapacitance-dominated Na+-storage properties than the nanocrystal counterpart.The MoO_(2) SCs@N-CNFs paper with mass loadings of 2.2–10.1 mg cm^(−2) can be directly used as free-standing anode for SICs,which exhibit high reversible gravimetric/areal capacities both in liquid and quasi-solid-state electrolytes.The assembled flexible SICs competitively exhibit exceptional energy density and cycling stability.More significantly,the sub-nanoscale engineering strategy here is promisingly generalized to future electrode design for other electrochemical energy-related applications and beyond.展开更多
Direct stimulation of peripheral nerves with implantable electrodes successfully provided sensory feedback to amputees while using hand prostheses.Longevity of the electrodes is key to success,which we have improved f...Direct stimulation of peripheral nerves with implantable electrodes successfully provided sensory feedback to amputees while using hand prostheses.Longevity of the electrodes is key to success,which we have improved for the polyimide-based transverse intrafascicular multichannel electrode(TIME).The TIMEs were implanted in the median and ulnar nerves of three trans-radial amputees for up to six months.We present a comprehensive assessment of the electrical properties of the thin-film metallization as well as material status post explantationem.The TIMEs stayed within the electrochemical safe limits while enabling consistent and precise amplitude modulation.This lead to a reliable performance in terms of eliciting sensation.No signs of corrosion or morphological change to the thin-film metallization of the probes was observed by means of electrochemical and optical analysis.The presented longevity demonstrates that thin-film electrodes are applicable in permanent implant systems.展开更多
Oxide/metal/oxide(OMO)and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs).The percolation thickness and conductivity of the metal layer are very cru...Oxide/metal/oxide(OMO)and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs).The percolation thickness and conductivity of the metal layer are very crucial for the optoelectrical properties of any OMO TE.Here,we report a facile method to promote the initial growth of the metal layer by improving the interfacial wettability between O-M interface.By subsequently combined with high-quality zinc oxide(ZnO)films,ZnO/Cu/ZnO TEs that have not only low sheet resistance(19.3/sq)but also enhanced thermal stability can be obtained,with a performance of an average transmittance of 84.4%over the visible spectral range of 400–800 nm.展开更多
Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer s...Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer stresses in film-substrate electrodes during electrochemical processes.This method consists of two parts:stress models featuring Li-dependent material modulus and in situ deformation measurements,through which electrode bilayer stresses evolution accompanied by Li-dependent material modulus can be quantitatively characterized.As application of the method,typical silicon-composite and carbon-composite film-substrate electrodes are selected for in situ mechanical measurements and experimental analysis is performed.Results show that silicon material and carbon material exhibit significant,continuous softening and stiffening,respectively.In two film-substrate electrodes,electrode material films experience compressive stress and current collector substrates undergo a tensile-to-compressive conversion across the thickness.Besides,moduli and stresses in both electrodes vary nonlinearly with capacity,presenting non-overlapping paths between lithiation and delithiation.Based on experimental data,we further demonstrate the key role of Li-dependent modulus on electrode stresses,finding that silicon material softening decreases and carbon material stiffening increases electrode stresses.The deficiencies of current stress measurement method based on Stoney equation and the applicability of our method are discussed.展开更多
both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of th...both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated.展开更多
The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influen...The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.展开更多
文摘A series of dye-sensitized solar cells based on ZnO-modified TiO2 nano-porous films have been prepared. The current-voltage characteristics of the cells show that the ZnO-modification can improve the open-circuit voltage and the fill factor but can decrease the short-circuit current. Dark current and transient photovoltage measurements are used to study the back reaction. It is indicated that the recombination process is suppressed by blocking the hole transporting from the nano-porous TiO2 since the surface of the semiconductor is almost fully covered with ZnO as a barrier layer.
基金supported by the Self-deployment Project of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ104)the Fujian Province STS Project(Nos.2020T3002 and 2022T3012)。
文摘Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication,which has the advantages of high modulation rate,low half-wave voltage,large bandwidth,and easy integration compared with conventional bulk lithium niobate modulator.However,because the electrode gap of the lithium niobate film modulator is very narrow,when the microwave frequency gets higher,it leads to higher microwave loss,and the electro-optical performance of the modulator will be greatly reduced.Here,we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz,exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz.High-speed data transmission test has been performed,showing good performance.
基金supported by the National Natural Science Foundation of China(52275463,51772240)the National Key Research and Development Program of China(2021YFB3302000)the Key Research and Development Projects of Shaanxi Province,China(2018ZDXM-GY-135)。
文摘The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.
基金This work is supported by the National Natural Science Foundation of China (No.51772127,51772131,and 52072151)Jinan Independent Innovative Team (2020GXRC015)+2 种基金Taishan Schol-ars (No.ts201712050)Natural Science Doctoral Foundation of Shandong Pro-vince (ZR2019BEM038)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong.
文摘Smart construction of battery-type anodes with high rate and good mechanical properties is significant for advanced sodium ion capacitors(SICs).Herein,a flexible film consisting of MoO_(2) subnanoclusters encapsulated in nitrogen-doped carbon nanofibers(MoO_(2) SCs@N-CNFs)is designed and synthesized via electrospinning toward SICs as anodes.The strong N-Mo interaction guarantees the stable yet uniform dispersion of high loading MoO_(2) SCs(≈40 wt.%)in the flexible carbonaceous substrate.The sub-nanoscale effect of SCs restrains electrode pulverization and improves the Na+diffusion kinetics,rendering better pseudocapacitance-dominated Na+-storage properties than the nanocrystal counterpart.The MoO_(2) SCs@N-CNFs paper with mass loadings of 2.2–10.1 mg cm^(−2) can be directly used as free-standing anode for SICs,which exhibit high reversible gravimetric/areal capacities both in liquid and quasi-solid-state electrolytes.The assembled flexible SICs competitively exhibit exceptional energy density and cycling stability.More significantly,the sub-nanoscale engineering strategy here is promisingly generalized to future electrode design for other electrochemical energy-related applications and beyond.
文摘Direct stimulation of peripheral nerves with implantable electrodes successfully provided sensory feedback to amputees while using hand prostheses.Longevity of the electrodes is key to success,which we have improved for the polyimide-based transverse intrafascicular multichannel electrode(TIME).The TIMEs were implanted in the median and ulnar nerves of three trans-radial amputees for up to six months.We present a comprehensive assessment of the electrical properties of the thin-film metallization as well as material status post explantationem.The TIMEs stayed within the electrochemical safe limits while enabling consistent and precise amplitude modulation.This lead to a reliable performance in terms of eliciting sensation.No signs of corrosion or morphological change to the thin-film metallization of the probes was observed by means of electrochemical and optical analysis.The presented longevity demonstrates that thin-film electrodes are applicable in permanent implant systems.
基金supported financially by the“youth talent project”of OUC.
文摘Oxide/metal/oxide(OMO)and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs).The percolation thickness and conductivity of the metal layer are very crucial for the optoelectrical properties of any OMO TE.Here,we report a facile method to promote the initial growth of the metal layer by improving the interfacial wettability between O-M interface.By subsequently combined with high-quality zinc oxide(ZnO)films,ZnO/Cu/ZnO TEs that have not only low sheet resistance(19.3/sq)but also enhanced thermal stability can be obtained,with a performance of an average transmittance of 84.4%over the visible spectral range of 400–800 nm.
文摘Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer stresses in film-substrate electrodes during electrochemical processes.This method consists of two parts:stress models featuring Li-dependent material modulus and in situ deformation measurements,through which electrode bilayer stresses evolution accompanied by Li-dependent material modulus can be quantitatively characterized.As application of the method,typical silicon-composite and carbon-composite film-substrate electrodes are selected for in situ mechanical measurements and experimental analysis is performed.Results show that silicon material and carbon material exhibit significant,continuous softening and stiffening,respectively.In two film-substrate electrodes,electrode material films experience compressive stress and current collector substrates undergo a tensile-to-compressive conversion across the thickness.Besides,moduli and stresses in both electrodes vary nonlinearly with capacity,presenting non-overlapping paths between lithiation and delithiation.Based on experimental data,we further demonstrate the key role of Li-dependent modulus on electrode stresses,finding that silicon material softening decreases and carbon material stiffening increases electrode stresses.The deficiencies of current stress measurement method based on Stoney equation and the applicability of our method are discussed.
文摘both theoretical and experimental findings of the photoresponse for water spliting of the pyrolytically prepared thin film iron oxide electrodes are given.Fur- ther,the spray time and the corresponding thickness of the Fe_2O_3 thin film were opti- mized to have maximum photoresponse.The effect of iodine doping on photoresponse of iron oxide was investigated.
文摘The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.