With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
Fundamental characteristics of the plastic scintillating fiber (PSF) as a detector for electromagnetic radiation (X & γ) are obtained by GEANT4 detector simulation tool package. The detector response to radiation...Fundamental characteristics of the plastic scintillating fiber (PSF) as a detector for electromagnetic radiation (X & γ) are obtained by GEANT4 detector simulation tool package. The detector response to radiation with energy of 10~400 keV is found out. Energy deposition as well as detector efficiency (DE) of the PSF are studied. In order to make linear array of the PSF for imaging purpose, the optimum length of fiber is also estimated.展开更多
The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation ...The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation device coupling beam. The chip was placed in the darkroom to avoid the interference of the external light.The cost of the instrument was decreased with a high brightness blue LED as excitation source;the performance of the system was valuated by the determination of FITC fluorescein with a minimum detectable concentration of 2.2×10^(-8) mol/L,the Signal-to-Noise Ratio (SNR) S/N=5.The correlation coefficient of the detection system within the range of 1.8×10^(-7) mol/L~4×10^(-5)mol/L was 0.9972.展开更多
An optical fiber transmitting photoelectric coupling current transformer has been developed. In the environment of high voltage and electromagnetic fields, this device is characterized by high insulation, high reliabi...An optical fiber transmitting photoelectric coupling current transformer has been developed. In the environment of high voltage and electromagnetic fields, this device is characterized by high insulation, high reliability, small mass and high anti-interference. The structure design and operating principle of the system are introduced, measurement errors are analyzed and experimental results are given.展开更多
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.
文摘Fundamental characteristics of the plastic scintillating fiber (PSF) as a detector for electromagnetic radiation (X & γ) are obtained by GEANT4 detector simulation tool package. The detector response to radiation with energy of 10~400 keV is found out. Energy deposition as well as detector efficiency (DE) of the PSF are studied. In order to make linear array of the PSF for imaging purpose, the optimum length of fiber is also estimated.
基金financial support from the National Science Foundation of China under Grant number 20299030,60427001 and 60501020.
文摘The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation device coupling beam. The chip was placed in the darkroom to avoid the interference of the external light.The cost of the instrument was decreased with a high brightness blue LED as excitation source;the performance of the system was valuated by the determination of FITC fluorescein with a minimum detectable concentration of 2.2×10^(-8) mol/L,the Signal-to-Noise Ratio (SNR) S/N=5.The correlation coefficient of the detection system within the range of 1.8×10^(-7) mol/L~4×10^(-5)mol/L was 0.9972.
文摘An optical fiber transmitting photoelectric coupling current transformer has been developed. In the environment of high voltage and electromagnetic fields, this device is characterized by high insulation, high reliability, small mass and high anti-interference. The structure design and operating principle of the system are introduced, measurement errors are analyzed and experimental results are given.