In a pot experiment, effects of N fertilizer application on the concentrations of Fe, Mn, Cu and Zn in shoot of rice and the quality of brown rice were studied. In the treatments with N fertilizer application, the con...In a pot experiment, effects of N fertilizer application on the concentrations of Fe, Mn, Cu and Zn in shoot of rice and the quality of brown rice were studied. In the treatments with N fertilizer application, the concentrations of Fe, Mn, Cu and Zn in most parts of rice shoot increased compared with control (no N fertilizer application). This indicated that the transportation ability of microelements from root to shoot in rice was improved with N fertilizer application. Effect of N fertilizer on IR68144 was similar to that of on IR64, but the concentrations of the microelements in plant differed, suggesting that the characteristic expression of the two rice genotypes was not controlled by the amount of N fertilizer supplied. The concentrations of those microelements in brown rice increased at first and then decreased with increasing N fertilizer application, reaching the highest at 160 kg/ha, at which the Fe, Mn, Cu and Zn concentrations in brown rice increased by 28.96%, 41.34%, 58.31% and 16.0% for IR64, and by 22.16%, 13.75%, 8.75% and 20.21% for IR68144 compared with control, respectively. Moreover, N fertilizer promoted the accumulation of protein, decreased the accumulation of amylose in grain, and enhanced gel consistency of brown rice. These results indicate that appropriate N fertilizer management could increase micronutrient contents in grain and improve nutrition quality of rice.展开更多
【目的】小麦是中国北方地区的主要粮食作物,主要种植在低锌的石灰性土壤上,其籽粒锌含量普遍偏低,因此小麦籽粒锌营养强化是近年研究的热点。小麦氮磷与锌的吸收利用存在互作效应。利用从2004年起在中国西北旱地潜在缺锌的石灰性土壤...【目的】小麦是中国北方地区的主要粮食作物,主要种植在低锌的石灰性土壤上,其籽粒锌含量普遍偏低,因此小麦籽粒锌营养强化是近年研究的热点。小麦氮磷与锌的吸收利用存在互作效应。利用从2004年起在中国西北旱地潜在缺锌的石灰性土壤上开展的长期定位试验,研究长期氮磷施用下的小麦产量与锌含量的变化。【方法】田间试验采用完全随机区组设计,设不施肥(CK)、单施氮肥(N160,施160 kg N·hm^(-2))、单施磷肥(P100,施100 kg P2O5·hm^(-2))和氮磷配施(N160P100,施160 kg N·hm^(-2)、100 kg P2O5·hm^(-2))4个处理。于2012—2016年连续4年进行田间取样,分析小麦的生物量、产量、产量构成,及锌含量与锌吸收和分配。【结果】与不施肥相比,长期单施氮肥使小麦穗数降低9%,籽粒产量和地上部生物量均降低12%,而籽粒锌含量由不施肥处理的29.4 mg·kg-1提高到42.8 mg·kg-1,提高幅度为46%,籽粒和地上部的锌吸收量分别增加29%和37%,地上部的氮锌比和磷锌比分别降低13%和45%;长期单施磷肥使小麦穗数、籽粒产量和地上部生物量分别增加18%、15%和16%,籽粒锌含量、籽粒和地上部的锌吸收量却分别降低31%、19%和17%,同时地上部的氮锌比和磷锌比分别提高19%和83%;氮磷配施的小麦穗数、籽粒产量和地上部生物量也显著增加,增加幅度分别为40%、46%和38%,籽粒和地上部的锌吸收量还分别提高36%和34%,但籽粒的锌含量仅降低8%,同时地上部的氮锌比和磷锌比分别提高43%和27%。与单施磷肥相比,氮磷配施不仅提高了籽粒产量,还提高了籽粒锌含量,主要原因是施用氮肥能够增加小麦锌吸收,减缓了磷肥对小麦锌吸收的抑制作用。【结论】在生产实践中,单施氮肥虽可以提高小麦籽粒的锌含量,达到食物锌营养强化的目的,但长期单施氮肥会导致土壤养分不平衡,不利于维持和提高小麦产量。长期单施磷肥虽展开更多
A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dong...A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dongting Lake area. The results showed that N concentration in the leachate did not differ significantly among the treatments of urea, controlled release N fertilizer and pig manure and that all these fertilizers produced higher total nitrogen (TN) concentrations in the leachate compared to the case where no fertilizer was applied. The TN leaching loss following urea treatment accounted for 2.28%, 0.66%, and 1.50% of the amount of N applied in the alluvial sandy loamy paddy soil (ASL), purple calcareous clayey paddy soil (PCC), and reddish-yellow loamy paddy soil (RYL), respectively. Higher TN loss was found to be correlated with the increased leachate volume in ASL compared with RYL, and the lowest TN loss was observed in the PCC, in which the lowest leachate volume and TN concentration were observed. Organic N and NH+-N were the major forms of N depleted through leachate, accounting for 56.8% and 39.7% of TN losses, respectively. Accordingly, soil-specific fertilization regimens are recommended; in particular, the maximum amount of fertilizer should be optimized for sandy soils with a high infiltration rate. To avoid a high N leaching loss from rice fields, organic N fertilizers such as urea or coated urea should primarily be used for surface topdressing or shallow-layer application and not for deep-layer application.展开更多
文摘In a pot experiment, effects of N fertilizer application on the concentrations of Fe, Mn, Cu and Zn in shoot of rice and the quality of brown rice were studied. In the treatments with N fertilizer application, the concentrations of Fe, Mn, Cu and Zn in most parts of rice shoot increased compared with control (no N fertilizer application). This indicated that the transportation ability of microelements from root to shoot in rice was improved with N fertilizer application. Effect of N fertilizer on IR68144 was similar to that of on IR64, but the concentrations of the microelements in plant differed, suggesting that the characteristic expression of the two rice genotypes was not controlled by the amount of N fertilizer supplied. The concentrations of those microelements in brown rice increased at first and then decreased with increasing N fertilizer application, reaching the highest at 160 kg/ha, at which the Fe, Mn, Cu and Zn concentrations in brown rice increased by 28.96%, 41.34%, 58.31% and 16.0% for IR64, and by 22.16%, 13.75%, 8.75% and 20.21% for IR68144 compared with control, respectively. Moreover, N fertilizer promoted the accumulation of protein, decreased the accumulation of amylose in grain, and enhanced gel consistency of brown rice. These results indicate that appropriate N fertilizer management could increase micronutrient contents in grain and improve nutrition quality of rice.
文摘【目的】小麦是中国北方地区的主要粮食作物,主要种植在低锌的石灰性土壤上,其籽粒锌含量普遍偏低,因此小麦籽粒锌营养强化是近年研究的热点。小麦氮磷与锌的吸收利用存在互作效应。利用从2004年起在中国西北旱地潜在缺锌的石灰性土壤上开展的长期定位试验,研究长期氮磷施用下的小麦产量与锌含量的变化。【方法】田间试验采用完全随机区组设计,设不施肥(CK)、单施氮肥(N160,施160 kg N·hm^(-2))、单施磷肥(P100,施100 kg P2O5·hm^(-2))和氮磷配施(N160P100,施160 kg N·hm^(-2)、100 kg P2O5·hm^(-2))4个处理。于2012—2016年连续4年进行田间取样,分析小麦的生物量、产量、产量构成,及锌含量与锌吸收和分配。【结果】与不施肥相比,长期单施氮肥使小麦穗数降低9%,籽粒产量和地上部生物量均降低12%,而籽粒锌含量由不施肥处理的29.4 mg·kg-1提高到42.8 mg·kg-1,提高幅度为46%,籽粒和地上部的锌吸收量分别增加29%和37%,地上部的氮锌比和磷锌比分别降低13%和45%;长期单施磷肥使小麦穗数、籽粒产量和地上部生物量分别增加18%、15%和16%,籽粒锌含量、籽粒和地上部的锌吸收量却分别降低31%、19%和17%,同时地上部的氮锌比和磷锌比分别提高19%和83%;氮磷配施的小麦穗数、籽粒产量和地上部生物量也显著增加,增加幅度分别为40%、46%和38%,籽粒和地上部的锌吸收量还分别提高36%和34%,但籽粒的锌含量仅降低8%,同时地上部的氮锌比和磷锌比分别提高43%和27%。与单施磷肥相比,氮磷配施不仅提高了籽粒产量,还提高了籽粒锌含量,主要原因是施用氮肥能够增加小麦锌吸收,减缓了磷肥对小麦锌吸收的抑制作用。【结论】在生产实践中,单施氮肥虽可以提高小麦籽粒的锌含量,达到食物锌营养强化的目的,但长期单施氮肥会导致土壤养分不平衡,不利于维持和提高小麦产量。长期单施磷肥虽
基金Supported by the National Natural Science Foundation of China (No.40771120)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period (No.2007BAD87B11)
文摘A two-year lysimeter study was conducted to study the effects of different fertilizers and soils on nitrogen leaching loss in a double rice cropping system by considering three major types of paddy soils from the Dongting Lake area. The results showed that N concentration in the leachate did not differ significantly among the treatments of urea, controlled release N fertilizer and pig manure and that all these fertilizers produced higher total nitrogen (TN) concentrations in the leachate compared to the case where no fertilizer was applied. The TN leaching loss following urea treatment accounted for 2.28%, 0.66%, and 1.50% of the amount of N applied in the alluvial sandy loamy paddy soil (ASL), purple calcareous clayey paddy soil (PCC), and reddish-yellow loamy paddy soil (RYL), respectively. Higher TN loss was found to be correlated with the increased leachate volume in ASL compared with RYL, and the lowest TN loss was observed in the PCC, in which the lowest leachate volume and TN concentration were observed. Organic N and NH+-N were the major forms of N depleted through leachate, accounting for 56.8% and 39.7% of TN losses, respectively. Accordingly, soil-specific fertilization regimens are recommended; in particular, the maximum amount of fertilizer should be optimized for sandy soils with a high infiltration rate. To avoid a high N leaching loss from rice fields, organic N fertilizers such as urea or coated urea should primarily be used for surface topdressing or shallow-layer application and not for deep-layer application.