The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the redu...The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the reduction leaching of rare earth from the ion-adsorption type rare earths ore with ferrous sulfate was innovatively put forward. The soak leaching process and the column leaching process were investigated in the present study. It was determined that ion-exchangeable phase could be released, and part of colloidal sediment phase rare earth could be reduction leached by the cations with reduction properties. The mechanism of reduction leaching was discussed with the Eh-pH diagram of cerium. Moreover, the stronger reduction of reductive ions, the greater acidity of leaching agent solution, and the higher reductive ion concentration, could result in the higher rare earth efficiency and the bigger ce-rium partition in the leaching liquor. In the ferrous sulfate column leaching process, the rare earth leaching rate and the rare earth effi-ciency were a little higher than with (NH4)2SO4 agent, and the rare earth efficiency and the partitioning of cerium in leaching liquor could be about 102% and 5.31%, respectively. However, the ferrous sulfate leaching process revealed some problems, so compound leaching with magnesium sulfate and a small amount of ferrous sulfate was proposed to an excellent alternative leaching agent for further studies, which may realize efficiency extraction and be environment-friendly.展开更多
Ferrous and manganese ions, as essential elements, significantly affect the synthesis of Haem-C, which participates in the energy metabolism and proliferation of anammox bacteria. In this study, two identical sequenci...Ferrous and manganese ions, as essential elements, significantly affect the synthesis of Haem-C, which participates in the energy metabolism and proliferation of anammox bacteria. In this study, two identical sequencing batch biofilm reactors were used to investigate the effects of ferrous and manganese ions on nitrogen removal efficiency and the potential of metal ions serving as electron donor/acceptors in the anammox process. Fluorescence in situ hybridization analysis was applied to investigate the microbial growth. Results showed that the nitrogen removal increased at high concentrations of Fe2+ and Mn2+ and the maximum removal efficiency was nearly 95% at Fe2+ 0.08 mmol/L and Mn2+ 0.05 mmol/L, which is nearly 15% and 8% higher than at the lowest Fe2+ and Mn2+ concentrations (0.04 and 0.0125 mmol/L). The stabilities of the anammox reactor and the anammox bacterial growth were also enhanced with the elevated Fe2+ and Mn2+ concentrations. The Fe2+ and Mn2+were consumed by anammox bacteria along with the removal of ammonia and nitrite. Stoichiometry analysis showed Fe2+ could serve as an electron donor for NO3-N in the anammox process. Nitrate could be reduced with Fe2+ serving as the electron donor in the anammox system, which causes the value of NO^-N/NH4-N to decrease with the increasing of N-removal efficiency.展开更多
A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China wer...A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.展开更多
As a diagenetic progress, bioturbation influences solute exchange across the sediment-water interface (SWI). Different benthic animals have various mechanical activities in sediment, thereby they may have different ...As a diagenetic progress, bioturbation influences solute exchange across the sediment-water interface (SWI). Different benthic animals have various mechanical activities in sediment, thereby they may have different effects on solute exchange across the SWI. This laboratory study examined the impacts of different benthic animals on phosphorus dynamics across the SWI. Tubificid worms and Chironomidae larvae were introduced as model organisms which, based on their mechanical activities, belong to upward-conveyors and gallery-diffusers, respectively. The microcosm simulation study was carried out with a continuous flow culture system, and all sediment, water, and worms and larvae specimens were sampled from Taihu Lake, China. To compare their bioturbation effects, the same biomass (17.1 g wet weight (ww)/m ^2 ) was adopted for worms and larvae. Worms altered no oxygen penetration depth in sediment, while larvae increased the O 2 penetration depth, compared to the control treatment. Their emergence also enhanced sediment O 2 uptake. The oxidation of ferrous iron in pore water produced ferric iron oxyhydroxides that adsorbed soluble reactive phosphorus (SRP) from the overlying water and pore water. Larvae built obviously oxidized tubes with about 2 mm diameter and the maximum length of 6 cm in sediment, and significantly decreased ferrous iron and SRP in the pore water compared to the control and worms treatments. Worms constructed no visually-oxidized galleries in the sediment in contrast to larvae, and they did not significantly alter SRP in the pore water relative to the control treatment. The adsorption of ferric iron oxyhydroxides to SRP caused by worms and larvae inhibited SRP release from sediment. Comparatively, worms inhibited more SRP release than larvae based on the same biomass, as they successively renewed the ferric iron oxyhydroxides rich oxidation layer through their deposition.展开更多
The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithiu...The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS_(2))has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS_(2) as anode for alkaliion batteries(LIBs,SIBs,and PIBs)are summarized.Furthermore,the existing challenges and prospects of the development of FeS_(2)-based anode materials for alkali-ion batteries are presented at last.展开更多
This study was conducted to determine the effects of maternal dietary supplementation of ferrous glycine chelate(Fe-Gly) and ferrous sulfate monohydrate(FeSO_4·H_2O) on the relative organ weight, tissue iron cont...This study was conducted to determine the effects of maternal dietary supplementation of ferrous glycine chelate(Fe-Gly) and ferrous sulfate monohydrate(FeSO_4·H_2O) on the relative organ weight, tissue iron contents, red blood cells(RBC), hemoglobin concentration(HGB) and hematocrit(HCT) in blood, as well as ferritin(Fn), serum iron(SI), and total iron binding capacity(TIBC) in serum of newborn piglets.Forty-five sows(Landrace × Large white, mean parity 3 to 4, no significant differences in BW) were randomly allotted to 9 treatments(n=5 sows/treatment): control(basal diet with no Fe supplementation), the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as Fe-Gly, and the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as FeSO_4·H_2O.The neonatal piglets(n=45) were used to determine the relative organ weight, tissue iron contents and blood biochemical indices.Compared with the control, the relative weight of spleen and kidney were significantly increased(P < 0.05) in the Fe-Gly groups.The iron contents in liver,spleen, kidney and femur were also found increased(P < 0.05) in the Fe-Gly groups.The RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in blood and Fn(d 1) and SI(d 1 and 21) significantly increased(P < 0.05), but the TIBC(d 1 and 21) in serum decreased(P < 0.05) in the Fe-Gly groups.Moreover, the kidney relative weight, iron content in liver, spleen, kidney and femur, RBC(d 1) and HGB(d 21) in blood, and SI(d 1)in the Fe-Gly groups increased(P < 0.05) compared with the FeSO_4·H_2O treatment.Linear and quadratic responses of the kidney relative weight, the iron content in liver, spleen, kidney and femur, RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in whole blood, SI(d 1) and TIBC(d 1 and 21) in the Fe-Gly groups were observed(P < 0.05).Linear responses of Fn(d 1 and 21) and SI(d 21) in the Fe-Gly groups, and spleen relative weight, HCT(d 1), Fn(d 1) and TIBC(d 1 and 21) in the FeSO_4·H_2O groups were observed(P < 0.05).These finding suggest that Fe-Gly supplemented at the l展开更多
Ferroptosis is a type of cell death accompanied by iron-dependent lipid peroxidation,thus stimulating ferroptosis may be a potential strategy for treating gastric cancer,therapeutic agents against which are urgently r...Ferroptosis is a type of cell death accompanied by iron-dependent lipid peroxidation,thus stimulating ferroptosis may be a potential strategy for treating gastric cancer,therapeutic agents against which are urgently required.Jiyuan oridonin A(JDA) is a natural compound isolated from Jiyuan Rabdosia rubescens with anti-tumor activity,unclear anti-tumor mechanisms and limited water solubility hamper its clinical application.Here,we showed a2,a new JDA derivative,inhibited the growth of gastric cancer cells.Subsequently,we discovered for the first time that a2 induced ferroptosis.Importantly,compound a2 decreased GPX4 expression and overexpressing GPX4 antagonized the anti-proliferative activity of a2.Furthermore,we demonstrated that a2 caused ferrous iron accumulation through the autophagy pathway,prevention of which rescued a2 induced ferrous iron elevation and cell growth inhibition.Moreover,a2 exhibited more potent anti-cancer activity than 5-fluorouracil in gastric canc er cell line-derived xenograft mice models.Patient-derived tumor xenograft models from different patients displayed varied sensitivity to a2,and GPX4 downregulation indicated the sensitivity of tumors to a2.Finally,a2 exhibited well pharmacokinetic characteristic s.Overall,our data suggest that inducing ferroptosis is the major mechanism mediating anti-tumor activity of a2,and a2 will hopefully serve as a promising compound for gastric cancer treatment.展开更多
A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained...A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.展开更多
To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malon...To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.展开更多
The gleyisation of representative paddy soils in the middle reaches of the Yangtze caver was characterized,taking oxidation-reduction potential(Eh),the amount of active reducing substances and the forms of iron and ma...The gleyisation of representative paddy soils in the middle reaches of the Yangtze caver was characterized,taking oxidation-reduction potential(Eh),the amount of active reducing substances and the forms of iron and manganese as the parameters.The Eh value was linearly related with the logarithm of the amount of active reducing substances, which was contributed by ferrous iron by 83% on an avers.The degree of gleyization of dament horizons was graded as ungleyed,slightly gleyed,mildly gleyed and gleyed.The Eh of the four grades was>500,300-500,100-300 and<100 mV,respectively, and the corresponding amoks of active reducing substances was<1,1-7,7-30 and>30 mmol.kg(-1),respectively.The amount of ferrous iron of the four grades was<0.5,0.5-5,5-25 and > 25 mmol kg-1,respectively.The extent of gleyisation of a soil was classified as upper-gleyed, middle-gleyed and lower-gleyed, depending on whether the depth of the gley horbon was less than 30 cm,30-60 cm or more than 60 cm.展开更多
The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+...The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+ concentration, pH and ionic strength level were discussed. It is demonstrated that, aniline degradation rate increases with increasing persulfate concentration, but much more ferrous ion inhibits the aniline degradation. When the aniline concentration is 0.10 mmol/L, the maximum aniline degradation occurs at the S2O82- to Fe2+ molar ratio of 250/5 at pH 7.0. In the pH range of 5.0-8.5, increasing pH causes higher aniline degradation. What's more, the increase of ionic strength in solution causes inhibiting in the reaction. Produced intermediates during the oxidation process were identified using gas chromatography-mass spectrometry (GC-MS) technology. And degradation pathways of aniline were also tentatively proposed.展开更多
In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reacti...In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.展开更多
Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chem...Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.展开更多
In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric aci...In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.展开更多
基金Project supported by National Science and Technology Support Program of China(2015BAB16B01)Training Program of Major Academic and Technical Leaders in Jiangxi Province(20142BCB22005)Top Youth Talent Training Program of "Gan Po 555 Talents Project" of Jiangxi Province
文摘The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the reduction leaching of rare earth from the ion-adsorption type rare earths ore with ferrous sulfate was innovatively put forward. The soak leaching process and the column leaching process were investigated in the present study. It was determined that ion-exchangeable phase could be released, and part of colloidal sediment phase rare earth could be reduction leached by the cations with reduction properties. The mechanism of reduction leaching was discussed with the Eh-pH diagram of cerium. Moreover, the stronger reduction of reductive ions, the greater acidity of leaching agent solution, and the higher reductive ion concentration, could result in the higher rare earth efficiency and the bigger ce-rium partition in the leaching liquor. In the ferrous sulfate column leaching process, the rare earth leaching rate and the rare earth effi-ciency were a little higher than with (NH4)2SO4 agent, and the rare earth efficiency and the partitioning of cerium in leaching liquor could be about 102% and 5.31%, respectively. However, the ferrous sulfate leaching process revealed some problems, so compound leaching with magnesium sulfate and a small amount of ferrous sulfate was proposed to an excellent alternative leaching agent for further studies, which may realize efficiency extraction and be environment-friendly.
基金supported by the National Natural Science Foundation of China(No.21177033)
文摘Ferrous and manganese ions, as essential elements, significantly affect the synthesis of Haem-C, which participates in the energy metabolism and proliferation of anammox bacteria. In this study, two identical sequencing batch biofilm reactors were used to investigate the effects of ferrous and manganese ions on nitrogen removal efficiency and the potential of metal ions serving as electron donor/acceptors in the anammox process. Fluorescence in situ hybridization analysis was applied to investigate the microbial growth. Results showed that the nitrogen removal increased at high concentrations of Fe2+ and Mn2+ and the maximum removal efficiency was nearly 95% at Fe2+ 0.08 mmol/L and Mn2+ 0.05 mmol/L, which is nearly 15% and 8% higher than at the lowest Fe2+ and Mn2+ concentrations (0.04 and 0.0125 mmol/L). The stabilities of the anammox reactor and the anammox bacterial growth were also enhanced with the elevated Fe2+ and Mn2+ concentrations. The Fe2+ and Mn2+were consumed by anammox bacteria along with the removal of ammonia and nitrite. Stoichiometry analysis showed Fe2+ could serve as an electron donor for NO3-N in the anammox process. Nitrate could be reduced with Fe2+ serving as the electron donor in the anammox system, which causes the value of NO^-N/NH4-N to decrease with the increasing of N-removal efficiency.
基金Item Sponsored by National Natural Science Foundation of China (50204005 ,50374029)
文摘A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.
基金supported by the National Natural Science Foundation of China(No.40730528,50979102)the Society Development Project of Jiangsu Province(No.BE2009603)
文摘As a diagenetic progress, bioturbation influences solute exchange across the sediment-water interface (SWI). Different benthic animals have various mechanical activities in sediment, thereby they may have different effects on solute exchange across the SWI. This laboratory study examined the impacts of different benthic animals on phosphorus dynamics across the SWI. Tubificid worms and Chironomidae larvae were introduced as model organisms which, based on their mechanical activities, belong to upward-conveyors and gallery-diffusers, respectively. The microcosm simulation study was carried out with a continuous flow culture system, and all sediment, water, and worms and larvae specimens were sampled from Taihu Lake, China. To compare their bioturbation effects, the same biomass (17.1 g wet weight (ww)/m ^2 ) was adopted for worms and larvae. Worms altered no oxygen penetration depth in sediment, while larvae increased the O 2 penetration depth, compared to the control treatment. Their emergence also enhanced sediment O 2 uptake. The oxidation of ferrous iron in pore water produced ferric iron oxyhydroxides that adsorbed soluble reactive phosphorus (SRP) from the overlying water and pore water. Larvae built obviously oxidized tubes with about 2 mm diameter and the maximum length of 6 cm in sediment, and significantly decreased ferrous iron and SRP in the pore water compared to the control and worms treatments. Worms constructed no visually-oxidized galleries in the sediment in contrast to larvae, and they did not significantly alter SRP in the pore water relative to the control treatment. The adsorption of ferric iron oxyhydroxides to SRP caused by worms and larvae inhibited SRP release from sediment. Comparatively, worms inhibited more SRP release than larvae based on the same biomass, as they successively renewed the ferric iron oxyhydroxides rich oxidation layer through their deposition.
基金the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS_(2))has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS_(2) as anode for alkaliion batteries(LIBs,SIBs,and PIBs)are summarized.Furthermore,the existing challenges and prospects of the development of FeS_(2)-based anode materials for alkali-ion batteries are presented at last.
基金supported by funds from the Agriculture Research System in Shandong Province (Project No.SDAIT-08-05)
文摘This study was conducted to determine the effects of maternal dietary supplementation of ferrous glycine chelate(Fe-Gly) and ferrous sulfate monohydrate(FeSO_4·H_2O) on the relative organ weight, tissue iron contents, red blood cells(RBC), hemoglobin concentration(HGB) and hematocrit(HCT) in blood, as well as ferritin(Fn), serum iron(SI), and total iron binding capacity(TIBC) in serum of newborn piglets.Forty-five sows(Landrace × Large white, mean parity 3 to 4, no significant differences in BW) were randomly allotted to 9 treatments(n=5 sows/treatment): control(basal diet with no Fe supplementation), the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as Fe-Gly, and the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as FeSO_4·H_2O.The neonatal piglets(n=45) were used to determine the relative organ weight, tissue iron contents and blood biochemical indices.Compared with the control, the relative weight of spleen and kidney were significantly increased(P < 0.05) in the Fe-Gly groups.The iron contents in liver,spleen, kidney and femur were also found increased(P < 0.05) in the Fe-Gly groups.The RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in blood and Fn(d 1) and SI(d 1 and 21) significantly increased(P < 0.05), but the TIBC(d 1 and 21) in serum decreased(P < 0.05) in the Fe-Gly groups.Moreover, the kidney relative weight, iron content in liver, spleen, kidney and femur, RBC(d 1) and HGB(d 21) in blood, and SI(d 1)in the Fe-Gly groups increased(P < 0.05) compared with the FeSO_4·H_2O treatment.Linear and quadratic responses of the kidney relative weight, the iron content in liver, spleen, kidney and femur, RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in whole blood, SI(d 1) and TIBC(d 1 and 21) in the Fe-Gly groups were observed(P < 0.05).Linear responses of Fn(d 1 and 21) and SI(d 21) in the Fe-Gly groups, and spleen relative weight, HCT(d 1), Fn(d 1) and TIBC(d 1 and 21) in the FeSO_4·H_2O groups were observed(P < 0.05).These finding suggest that Fe-Gly supplemented at the l
基金supported by grants from the National Natural Science Foundation of China (Nos. 81773562, 82020108030, and U1904163)National Key Research and Development Project (No. 2018YFE0195100, China)the Science and Technology Program of Henan Province (No. 202102310152, China)。
文摘Ferroptosis is a type of cell death accompanied by iron-dependent lipid peroxidation,thus stimulating ferroptosis may be a potential strategy for treating gastric cancer,therapeutic agents against which are urgently required.Jiyuan oridonin A(JDA) is a natural compound isolated from Jiyuan Rabdosia rubescens with anti-tumor activity,unclear anti-tumor mechanisms and limited water solubility hamper its clinical application.Here,we showed a2,a new JDA derivative,inhibited the growth of gastric cancer cells.Subsequently,we discovered for the first time that a2 induced ferroptosis.Importantly,compound a2 decreased GPX4 expression and overexpressing GPX4 antagonized the anti-proliferative activity of a2.Furthermore,we demonstrated that a2 caused ferrous iron accumulation through the autophagy pathway,prevention of which rescued a2 induced ferrous iron elevation and cell growth inhibition.Moreover,a2 exhibited more potent anti-cancer activity than 5-fluorouracil in gastric canc er cell line-derived xenograft mice models.Patient-derived tumor xenograft models from different patients displayed varied sensitivity to a2,and GPX4 downregulation indicated the sensitivity of tumors to a2.Finally,a2 exhibited well pharmacokinetic characteristic s.Overall,our data suggest that inducing ferroptosis is the major mechanism mediating anti-tumor activity of a2,and a2 will hopefully serve as a promising compound for gastric cancer treatment.
文摘A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.
文摘To study the effects of selenium on root oxidizing ability and yield of rice under ferrous stress, a pot culture experiment was conducted, the activity of glutathione peroxidase (GSH-Px) and the concentration of malonaldelyde (MDA) were determined. The root oxidizing ability and yield characters of rice were examined. Results showed that appropriate amount of Se enhanced the activity of glutathione peroxidase and the oxidizing ability of rice roots significantly, reduced the concentration of MDA, increased 1000-grain weight of rice, F = 26.96**, decreased empty and blighted grain rate, increased the rice yield, F = 11.53**, and enhanced the rice resistance under ferrous stress.
文摘The gleyisation of representative paddy soils in the middle reaches of the Yangtze caver was characterized,taking oxidation-reduction potential(Eh),the amount of active reducing substances and the forms of iron and manganese as the parameters.The Eh value was linearly related with the logarithm of the amount of active reducing substances, which was contributed by ferrous iron by 83% on an avers.The degree of gleyization of dament horizons was graded as ungleyed,slightly gleyed,mildly gleyed and gleyed.The Eh of the four grades was>500,300-500,100-300 and<100 mV,respectively, and the corresponding amoks of active reducing substances was<1,1-7,7-30 and>30 mmol.kg(-1),respectively.The amount of ferrous iron of the four grades was<0.5,0.5-5,5-25 and > 25 mmol kg-1,respectively.The extent of gleyisation of a soil was classified as upper-gleyed, middle-gleyed and lower-gleyed, depending on whether the depth of the gley horbon was less than 30 cm,30-60 cm or more than 60 cm.
基金Project partly supported by a Grant from E.I. du Pont de Nemours and Company to Rutgers UniversityProject(2010B05020007) supported by the Foundation of Science and Technology Planning of Guangdong Province, China+2 种基金Project(2011ZM0054) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011K0013) supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, ChinaProject supported by the Research Fund of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, China
文摘The aniline degradation by persulfate activated with ferrous ion (Fe2+ ) was investigated in batch reactor at ambient temperature. The experimental factors in aqueous solutions including persulfate concentration, Fe2+ concentration, pH and ionic strength level were discussed. It is demonstrated that, aniline degradation rate increases with increasing persulfate concentration, but much more ferrous ion inhibits the aniline degradation. When the aniline concentration is 0.10 mmol/L, the maximum aniline degradation occurs at the S2O82- to Fe2+ molar ratio of 250/5 at pH 7.0. In the pH range of 5.0-8.5, increasing pH causes higher aniline degradation. What's more, the increase of ionic strength in solution causes inhibiting in the reaction. Produced intermediates during the oxidation process were identified using gas chromatography-mass spectrometry (GC-MS) technology. And degradation pathways of aniline were also tentatively proposed.
基金Project (2007AA06Z129) supported by the National High-tech Research and Development Program of China
文摘In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.
基金This work was supported by Science Challenge Project(Nos.TZ2016006-0103 and TZ2016006-0107-02)National Natural Science Foundation of China(Nos.90923025 and 51905194)Science Fund for Creative Research Groups of NSFC(No.51621064).The sincere thanks are given to Professor Zhang Xinquan(Shanghai Jiao Tong University)for his comments,and Mr Xu Yongbo for his kind assistance.
文摘Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.
基金Project(2010B050200007)supported by the Foundation of Science and Technology Planning Project of Guangdong Province,ChinaProject(2011ZM0054)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2011K0013)supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,ChinaProject(2012)supported by the Research Funds of Guangdong Provincial Key Laboratory of Atmospheric environment and Pollution Control,China
文摘In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.