Two novel metal-organic frameworks, {[Eu(phen)(NDA)1.5(H2O)]}n ((1); NDA = 2,6-naphthalenedicarboxylate ions, phen = 1,10-phenanthroline) and {[Gd(phen)(NDA)1.5]·0.5H2NDA}n (2), have been synthesized under hydrot...Two novel metal-organic frameworks, {[Eu(phen)(NDA)1.5(H2O)]}n ((1); NDA = 2,6-naphthalenedicarboxylate ions, phen = 1,10-phenanthroline) and {[Gd(phen)(NDA)1.5]·0.5H2NDA}n (2), have been synthesized under hydrothermal conditions. The structure analyses of 1 and 2 reveal that the two compounds belong to the triclinic system with space group P-1. Compound 1 features a 2D lattice structure while compound 2 displays a novel 3D architecture. The two frameworks were further characterized by elemental analyses, luminescent spectrua, and variable-temperature magnetic susceptibilities. The investigation of lumi-nescent property reveals that 1 exhibits characteristic red emission of Eu3+. Magnetic investigation suggests that the ferromagnetic coupling exists between adjacent Gd3+ in compound 2.展开更多
Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and super...Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.展开更多
ZnNiO thin films with different contents of Ni(0-10 at.%) were fabricated on quartz and Si(100) substrates by pulsed laser deposition(PLD).We measured the samples by X-ray diffraction(XRD),field-emission scanning elec...ZnNiO thin films with different contents of Ni(0-10 at.%) were fabricated on quartz and Si(100) substrates by pulsed laser deposition(PLD).We measured the samples by X-ray diffraction(XRD),field-emission scanning electron microscope(FE-SEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible spectrometer(UV-VIS),and Hall testing.When the Ni contents were below 3 at.%,partial Zn2+ ions were replaced by the Ni2+ ions without forming any other phases,which enhanced the conductivity of the film.When the Ni contents were above 3 at.%,Ni ions were at the interstitial sites,and Ni-related clusters and defects were able to emerge in the films,resulting in a worsening of electrical and optical properties.A ferromagnetic hysteresis with a coercive force of approximately 30 Oe was observed in the ZnNiO film with a Ni content of 3 at.% at room temperature.展开更多
ZnO:Cr layer was prepared by Cr ion implantation into ZnO bulk crystals. The structural, optical, and magnetic properties of the ZnO:Cr layer were studied with X-ray diffraction, photoluminescence, and superconducto...ZnO:Cr layer was prepared by Cr ion implantation into ZnO bulk crystals. The structural, optical, and magnetic properties of the ZnO:Cr layer were studied with X-ray diffraction, photoluminescence, and superconductor quantum interferometer, respectively. The ZnO:Cr layer implanted Cr with a dose of 5 10 16 cm 2 remained wurtzite structure and exhibited near-band-edge photoluminescence at 3.365 eV with full-width at half-maximum of 8.4 meV at 10 K. The magnetic measurement showed that the ferromagnetism changed at room temperature by different Cr concentration. For samples implanted to high doses, remanent magnetization reached 1.805 10 -4 emu/g and coercive field was 244.5 Oe. Hall effect measurement showed a decrease of the resistivity from 251.7 cmto 28.6 cmafter annealing at 800 ℃. The magnetism is interpreted by bound magnetic polarons, which were taken into account of the process that electrons were locally trapped by oxygen vacancies and occupied the orbitals that overlapped with d shell of neighboring Cr ions.展开更多
The Co/CoFe2O4 multilayers have been grown on the glass substrate using sputtering techniques. In these films the Co layers were measured to have the fcc structure with [11] axis perpendicular to the film plane, and t...The Co/CoFe2O4 multilayers have been grown on the glass substrate using sputtering techniques. In these films the Co layers were measured to have the fcc structure with [11] axis perpendicular to the film plane, and the CoFe2O4 layers are amorphous. Ferromagnetic resonance measurements have been made as a function of the external magnetic field orientation in a plane perpendicular to the film. The effective magnetization, effective anisotropy constant and interface anisotropy constant have been determined. The influence of Co layers thickness on magnetic properties was discussed.展开更多
基金Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200732)NCET (Grant No. 07-0463)Natural Science Foundation of Tianjin (Grant No. 07JCYBJC02000)
文摘Two novel metal-organic frameworks, {[Eu(phen)(NDA)1.5(H2O)]}n ((1); NDA = 2,6-naphthalenedicarboxylate ions, phen = 1,10-phenanthroline) and {[Gd(phen)(NDA)1.5]·0.5H2NDA}n (2), have been synthesized under hydrothermal conditions. The structure analyses of 1 and 2 reveal that the two compounds belong to the triclinic system with space group P-1. Compound 1 features a 2D lattice structure while compound 2 displays a novel 3D architecture. The two frameworks were further characterized by elemental analyses, luminescent spectrua, and variable-temperature magnetic susceptibilities. The investigation of lumi-nescent property reveals that 1 exhibits characteristic red emission of Eu3+. Magnetic investigation suggests that the ferromagnetic coupling exists between adjacent Gd3+ in compound 2.
基金Project(2016YFE0205700)supported by the National Key Research and Development Program of ChinaProject(18JCYBJC18000)supported by the Natural Science Foundation of Tianjin City,China。
文摘Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.
基金Project supported by the National Natural Science Foundation of China (No. 51072181)the Doctoral Fund of Ministry of Education of China (No. 20090101110044)
文摘ZnNiO thin films with different contents of Ni(0-10 at.%) were fabricated on quartz and Si(100) substrates by pulsed laser deposition(PLD).We measured the samples by X-ray diffraction(XRD),field-emission scanning electron microscope(FE-SEM),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible spectrometer(UV-VIS),and Hall testing.When the Ni contents were below 3 at.%,partial Zn2+ ions were replaced by the Ni2+ ions without forming any other phases,which enhanced the conductivity of the film.When the Ni contents were above 3 at.%,Ni ions were at the interstitial sites,and Ni-related clusters and defects were able to emerge in the films,resulting in a worsening of electrical and optical properties.A ferromagnetic hysteresis with a coercive force of approximately 30 Oe was observed in the ZnNiO film with a Ni content of 3 at.% at room temperature.
基金Supported by the National Natural Science Foundation of China(11075121)the International Cooperation Program of Ministry of Science and Technology of China(2010DFA02010)
文摘ZnO:Cr layer was prepared by Cr ion implantation into ZnO bulk crystals. The structural, optical, and magnetic properties of the ZnO:Cr layer were studied with X-ray diffraction, photoluminescence, and superconductor quantum interferometer, respectively. The ZnO:Cr layer implanted Cr with a dose of 5 10 16 cm 2 remained wurtzite structure and exhibited near-band-edge photoluminescence at 3.365 eV with full-width at half-maximum of 8.4 meV at 10 K. The magnetic measurement showed that the ferromagnetism changed at room temperature by different Cr concentration. For samples implanted to high doses, remanent magnetization reached 1.805 10 -4 emu/g and coercive field was 244.5 Oe. Hall effect measurement showed a decrease of the resistivity from 251.7 cmto 28.6 cmafter annealing at 800 ℃. The magnetism is interpreted by bound magnetic polarons, which were taken into account of the process that electrons were locally trapped by oxygen vacancies and occupied the orbitals that overlapped with d shell of neighboring Cr ions.
文摘The Co/CoFe2O4 multilayers have been grown on the glass substrate using sputtering techniques. In these films the Co layers were measured to have the fcc structure with [11] axis perpendicular to the film plane, and the CoFe2O4 layers are amorphous. Ferromagnetic resonance measurements have been made as a function of the external magnetic field orientation in a plane perpendicular to the film. The effective magnetization, effective anisotropy constant and interface anisotropy constant have been determined. The influence of Co layers thickness on magnetic properties was discussed.