The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among chan...The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.展开更多
为了抑制母线电压波动和负载变化对辅助逆变器输出电压的影响,提出了一种基于输出电压瞬时值反馈和母线电压及输出电流多重前馈的PID复合控制策略,介绍了反馈控制器和多重前馈控制器的设计方法。通过Matlab/Simulink仿真软件对提出的控...为了抑制母线电压波动和负载变化对辅助逆变器输出电压的影响,提出了一种基于输出电压瞬时值反馈和母线电压及输出电流多重前馈的PID复合控制策略,介绍了反馈控制器和多重前馈控制器的设计方法。通过Matlab/Simulink仿真软件对提出的控制策略进行了仿真验证,并在1台基于DSP+FPGA控制系统的200 k VA地铁辅助逆变器样机上进行试验。仿真和试验结果证明,该控制策略可以使辅助逆变器输出电压的正弦波形稳定、谐波含量低、抗扰动能力强、动态响应快,完全满足工业标准的要求。展开更多
文摘The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.
文摘为了抑制母线电压波动和负载变化对辅助逆变器输出电压的影响,提出了一种基于输出电压瞬时值反馈和母线电压及输出电流多重前馈的PID复合控制策略,介绍了反馈控制器和多重前馈控制器的设计方法。通过Matlab/Simulink仿真软件对提出的控制策略进行了仿真验证,并在1台基于DSP+FPGA控制系统的200 k VA地铁辅助逆变器样机上进行试验。仿真和试验结果证明,该控制策略可以使辅助逆变器输出电压的正弦波形稳定、谐波含量低、抗扰动能力强、动态响应快,完全满足工业标准的要求。