为了解决永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)运行过程中对系统参数扰动及端部效应等不确定因素敏感的问题,提出了一种PMLSM的非线性鲁棒控制方法。利用反馈线性化的思想,对PMLSM数学模型进行变换得到...为了解决永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)运行过程中对系统参数扰动及端部效应等不确定因素敏感的问题,提出了一种PMLSM的非线性鲁棒控制方法。利用反馈线性化的思想,对PMLSM数学模型进行变换得到包含不确定因素的准线性化且解耦的模型。采用msat函数的思想方法,设计了固定边界层滑模控制器,确保系统鲁棒性。同时给出了力观测器的设计方法估计新模型中未知的负载力。不需要知道系统参数的精确数值,通过确定其范围就可以使控制器得到良好的鲁棒性。仿真与实验结果均验证了文中所提出方法的正确性和控制策略的有效性。展开更多
The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structur...The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structure controller is specially designed for handling the airdrop process. The nonlinear system is linearized by input-output feedback linearization using differential geometry theories. On this basis, an inner loop system for velocity and attitude tracking control is designed by using the exponentially approaching rule of the variable structure theory. The whole flight control system is integrated with the outer loop flight altitude control. Digital simulation evidences the applicability of the system to potentially catastrophic course in airdropping heavy cargo and provides robustness against system parameter perturbation.展开更多
文摘为了解决永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)运行过程中对系统参数扰动及端部效应等不确定因素敏感的问题,提出了一种PMLSM的非线性鲁棒控制方法。利用反馈线性化的思想,对PMLSM数学模型进行变换得到包含不确定因素的准线性化且解耦的模型。采用msat函数的思想方法,设计了固定边界层滑模控制器,确保系统鲁棒性。同时给出了力观测器的设计方法估计新模型中未知的负载力。不需要知道系统参数的精确数值,通过确定其范围就可以使控制器得到良好的鲁棒性。仿真与实验结果均验证了文中所提出方法的正确性和控制策略的有效性。
文摘The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structure controller is specially designed for handling the airdrop process. The nonlinear system is linearized by input-output feedback linearization using differential geometry theories. On this basis, an inner loop system for velocity and attitude tracking control is designed by using the exponentially approaching rule of the variable structure theory. The whole flight control system is integrated with the outer loop flight altitude control. Digital simulation evidences the applicability of the system to potentially catastrophic course in airdropping heavy cargo and provides robustness against system parameter perturbation.