The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian...The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally, this paper proposes several sufficient conditions for feedback dissipative realization.展开更多
In this paper, the focus is on the boundary stability of a nanolayer in diffusion-reaction systems, taking into account a nonlinear boundary control condition. The authors focus on demonstrating the boundary stability...In this paper, the focus is on the boundary stability of a nanolayer in diffusion-reaction systems, taking into account a nonlinear boundary control condition. The authors focus on demonstrating the boundary stability of a nanolayer using the Lyapunov function approach, while making certain regularity assumptions and imposing appropriate control conditions. In addition, the stability analysis is extended to more complex systems by studying the limit problem with interface conditions using the epi-convergence approach. The results obtained in this article are then tested numerically to validate the theoretical conclusions.展开更多
基金This work was supported by Project 973 of China(Grant Nos.G1998020307,G1998020308)China Postdoctoral Science Foundation.
文摘The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally, this paper proposes several sufficient conditions for feedback dissipative realization.
文摘In this paper, the focus is on the boundary stability of a nanolayer in diffusion-reaction systems, taking into account a nonlinear boundary control condition. The authors focus on demonstrating the boundary stability of a nanolayer using the Lyapunov function approach, while making certain regularity assumptions and imposing appropriate control conditions. In addition, the stability analysis is extended to more complex systems by studying the limit problem with interface conditions using the epi-convergence approach. The results obtained in this article are then tested numerically to validate the theoretical conclusions.