Stackelberg differential game models have been used to study sequential decision making in noncooperative games in diverse fields. In this paper, we survey recent applications of Stackelberg differential game models t...Stackelberg differential game models have been used to study sequential decision making in noncooperative games in diverse fields. In this paper, we survey recent applications of Stackelberg differential game models to the supply chain management and marketing channels literatures. A common feature of these applications is the specification of the game structure: a decentralized channel composed of a manufacturer and independent retailers, and a sequential decision procedure with demand and supply dynamics and coordination issues. In supply chain management, Stackelberg differential games have been used to investigate inventory issues, wholesale and retail pricing strategies, and outsourcing in dynamic environments. The underlying demand typically has growth dynamics or seasonal variation. In marketing, Stackelberg differential games have been used to model cooperative advertising programs, store brand and national brand advertising strategies, shelf space allocation, and pricing and advertising decisions. The demand dynamics are usually extensions of the classical advertising capital models or sales-advertising response models. We begin by explaining the Stackelberg differential game solution methodology and then provide a description of the models and results reported in the literature.展开更多
An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-ca...An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails.展开更多
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of ...In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
A novel variable step-size modified super-exponential iteration(MSEI)decision feedback blind equalization(DFE)algorithm with second-order digital phase-locked loop is put forward to improve the convergence performance...A novel variable step-size modified super-exponential iteration(MSEI)decision feedback blind equalization(DFE)algorithm with second-order digital phase-locked loop is put forward to improve the convergence performance of super-exponential iteration DFE algorithm.Based on the MSEI-DFE algorithm,it is first proposed to develop an error function as an improvement to the error function of MSEI,which effectively achieves faster convergence speed of the algorithm.Subsequently,a hyperbolic tangent function variable step-size algorithm is developed considering the high variation rate of the hyperbolic tangent function around zero,so as to further improve the convergence speed of the algorithm.In the end,a second-order digital phase-locked loop is introduced into the decision feedback equalizer to track and compensate for the phase rotation of equalizer input signals.For the multipath underwater acoustic channel with mixed phase and phase rotation,quadrature phase shift keying(QPSK)and 16 quadrature amplitude modulation(16QAM)modulated signals are used in the computer simulation of the algorithm in terms of convergence and carrier recovery performance.The results show that the proposed algorithm can considerably improve convergence speed and steady-state error,make effective compensation for phase rotation,and efficiently facilitate carrier recovery.展开更多
针对在大规模多输入多输出(multiple-input multiple-output,MIMO)系统中,信道状态信息(channel state information,CSI)反馈量过大以及反馈的CSI过时的问题,提出一种基于自回归(autoregressive,AR)模型和主成分分析(principal componen...针对在大规模多输入多输出(multiple-input multiple-output,MIMO)系统中,信道状态信息(channel state information,CSI)反馈量过大以及反馈的CSI过时的问题,提出一种基于自回归(autoregressive,AR)模型和主成分分析(principal component analysis,PCA)方法的反馈算法。接收端进行信道估计获得CSI后,先利用AR模型预测出反馈所需时间之后的CSI;在此基础上计算压缩矩阵,然后利用PCA方法对预测的CSI进行压缩,再反馈给基站;最后基站端对接收到的CSI进行重构。从理论分析和仿真结果可以看出,该算法可以在降低反馈量的同时提高系统容量和信道恢复的准确性。展开更多
The article investigates how to send perfect space-time codes with low feedback amount and symbol-by-symbol decoding for X channel using precoders. It is assumed that two users are introduced with two antennas and two...The article investigates how to send perfect space-time codes with low feedback amount and symbol-by-symbol decoding for X channel using precoders. It is assumed that two users are introduced with two antennas and two receivers. Each user employs a rate-2 space-time block code and follows certain rule when sending codewords. The multi-user interference is eliminated by pre-coding at the transmitter and linear processing at the receiver. Compared with the existing scheme for the same scene, the proposed scheme greatly reduces feedback amount and improves the transmission efficiency, while keeping the same decoding complexity. Simulations demonstrate the validity of the proposed scheme.展开更多
Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are prop...Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.展开更多
A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from sub...A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from subsonic to supersonic condition in the mixing chamber of oscillator after the supplied flow pressure increases from 1.1×105 Pa to 5.0×105 Pa.When the supersonic flow is formed inside the oscillator,the wall-attached flow represents expansion wave and compression wave alternately.The oscillating frequency will saturate to a certain value with the increase of supplied pressure.Examination of the internal fluid dynamics indicates that the flow direction inside the FeedBack Channel(FBC)is related to the change of the local pressure at the inlet and the outlet of the feedback channel.The vortices produced in the mixing chamber present different distribution characteristics with the change of the fluid’s direction in the FBC.The sweeping jet is divided into two jets with varying flow rate over time by the splitter.In the end of two channels,two jets are accelerated above sound speed by convergent-divergent nozzle.Therefore,pulsating supersonic jets are produced at two outlets for this type of fluidic oscillator.展开更多
Artificial intelligence(AI)has shown great potential in wireless communications.AI-empowered communication algorithms have beaten many traditional algorithms through simulations.However,the existing works just use the...Artificial intelligence(AI)has shown great potential in wireless communications.AI-empowered communication algorithms have beaten many traditional algorithms through simulations.However,the existing works just use the simulated datasets to train and test the algorithms,which can not represent the power of AI in practical communication systems.Therefore,Peng Cheng Laboratory holds an AI competition,National Artificial Intelligence Competition(NAIC):AI+wireless communications,in which one of the topics is AI-empowered channel feedback system design using practical measurements.In this paper,we give a baseline neural network design,QuanCsiNet,for this competition,and the details of the channel measurements.QuanCsiNet shows excellent performance on channel feedback and the complexity of the neural networks is also given.展开更多
文摘Stackelberg differential game models have been used to study sequential decision making in noncooperative games in diverse fields. In this paper, we survey recent applications of Stackelberg differential game models to the supply chain management and marketing channels literatures. A common feature of these applications is the specification of the game structure: a decentralized channel composed of a manufacturer and independent retailers, and a sequential decision procedure with demand and supply dynamics and coordination issues. In supply chain management, Stackelberg differential games have been used to investigate inventory issues, wholesale and retail pricing strategies, and outsourcing in dynamic environments. The underlying demand typically has growth dynamics or seasonal variation. In marketing, Stackelberg differential games have been used to model cooperative advertising programs, store brand and national brand advertising strategies, shelf space allocation, and pricing and advertising decisions. The demand dynamics are usually extensions of the classical advertising capital models or sales-advertising response models. We begin by explaining the Stackelberg differential game solution methodology and then provide a description of the models and results reported in the literature.
文摘An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金financially supported by the Research Fund for the Visiting Scholar Program by the China Scholarship Council(Grant No.2011631504)the Fundamental Research Funds for the Central Universities(Grant No.201112G020)+1 种基金the National Natural Science Foundation of China(Grant No.41176032)China Scholarship Council
文摘In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China(61671461)。
文摘A novel variable step-size modified super-exponential iteration(MSEI)decision feedback blind equalization(DFE)algorithm with second-order digital phase-locked loop is put forward to improve the convergence performance of super-exponential iteration DFE algorithm.Based on the MSEI-DFE algorithm,it is first proposed to develop an error function as an improvement to the error function of MSEI,which effectively achieves faster convergence speed of the algorithm.Subsequently,a hyperbolic tangent function variable step-size algorithm is developed considering the high variation rate of the hyperbolic tangent function around zero,so as to further improve the convergence speed of the algorithm.In the end,a second-order digital phase-locked loop is introduced into the decision feedback equalizer to track and compensate for the phase rotation of equalizer input signals.For the multipath underwater acoustic channel with mixed phase and phase rotation,quadrature phase shift keying(QPSK)and 16 quadrature amplitude modulation(16QAM)modulated signals are used in the computer simulation of the algorithm in terms of convergence and carrier recovery performance.The results show that the proposed algorithm can considerably improve convergence speed and steady-state error,make effective compensation for phase rotation,and efficiently facilitate carrier recovery.
基金supported by the National Natural Science Foundation of China (51174263)the Natural Science Foundation of Henan (132300410461)
文摘The article investigates how to send perfect space-time codes with low feedback amount and symbol-by-symbol decoding for X channel using precoders. It is assumed that two users are introduced with two antennas and two receivers. Each user employs a rate-2 space-time block code and follows certain rule when sending codewords. The multi-user interference is eliminated by pre-coding at the transmitter and linear processing at the receiver. Compared with the existing scheme for the same scene, the proposed scheme greatly reduces feedback amount and improves the transmission efficiency, while keeping the same decoding complexity. Simulations demonstrate the validity of the proposed scheme.
基金Project supported by the Sichuan Science and Technology Program,China(Grant No.2019YJ0530)the Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)+1 种基金the Innovative Training Program for College Student of Sichuan Normal University,China(Grant No.S20191063609)the National Natural Science Foundation of China(Grant No.61205079)。
文摘Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.
基金supported by the National Science and Technology Major Project(No.2017-III-0011-0037)。
文摘A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from subsonic to supersonic condition in the mixing chamber of oscillator after the supplied flow pressure increases from 1.1×105 Pa to 5.0×105 Pa.When the supersonic flow is formed inside the oscillator,the wall-attached flow represents expansion wave and compression wave alternately.The oscillating frequency will saturate to a certain value with the increase of supplied pressure.Examination of the internal fluid dynamics indicates that the flow direction inside the FeedBack Channel(FBC)is related to the change of the local pressure at the inlet and the outlet of the feedback channel.The vortices produced in the mixing chamber present different distribution characteristics with the change of the fluid’s direction in the FBC.The sweeping jet is divided into two jets with varying flow rate over time by the splitter.In the end of two channels,two jets are accelerated above sound speed by convergent-divergent nozzle.Therefore,pulsating supersonic jets are produced at two outlets for this type of fluidic oscillator.
基金The work was supported in part by National Key Research and Development Program 2018YFA0701602National Science Foundation of China(NSFC)for Distinguished Young Scholars with Grant 61625106+1 种基金the NSFC under Grant 61941104,and 2019B010136Guangdong Province Basic and Applied Basic Research Foundation。
文摘Artificial intelligence(AI)has shown great potential in wireless communications.AI-empowered communication algorithms have beaten many traditional algorithms through simulations.However,the existing works just use the simulated datasets to train and test the algorithms,which can not represent the power of AI in practical communication systems.Therefore,Peng Cheng Laboratory holds an AI competition,National Artificial Intelligence Competition(NAIC):AI+wireless communications,in which one of the topics is AI-empowered channel feedback system design using practical measurements.In this paper,we give a baseline neural network design,QuanCsiNet,for this competition,and the details of the channel measurements.QuanCsiNet shows excellent performance on channel feedback and the complexity of the neural networks is also given.