Narrow genetic background is a key limiting factor in breeding stable high-yielding rice. The introduction and utilization of international rice core germplasm is an important way to increase the genetic diversity of ...Narrow genetic background is a key limiting factor in breeding stable high-yielding rice. The introduction and utilization of international rice core germplasm is an important way to increase the genetic diversity of domestic rice varieties. We conducted a genome-wide association study on 5 panicle traits of 315 rice accessions introduced from the international rice micro-core germplasm bank. Based on the tests from Yangzhou of China and Arkansas of American, environment exhibited a significant impacts on panicle length and primary branch number, while grain length, grain width and grain length/width ratio were insensitive to environment changes. We discovered a total of 7, 5, 10, 8 and 6 chromosomal regions or single nucleotide polymorphism marker loci that were significantly associated with primary branch number, panicle length, grain length, grain width and grain length/width ratio, respectively. Among them, eleven regions were associated with grain shape and one region associated with primary branch number, showing the good consistence in two different environments. Significant linear correlation was discovered between the average trait value and the number of favorable alleles carried by the varieties in all associated loci. Among the associated loci, varieties in aromatic and tropical japonica sub-groups possessed most favorable alleles, while those in temperate japonica sub-group contained the least. The domestic varieties mainly harbored unfavorable alleles in six of the associated loci being detected. On the contrary, 15 varieties from 11 different countries harbored more favorable alleles (as many as 30 or more) than the others. Remarkably, all these 15 varieties belonged to the tropical japonica sub-group. In conclusion, our study demonstrates that varieties in the tropical japonica sub-group had high potentials for breeding stable high-yielding rice. Based on this discovery, we proposed a new approach for improving the panicle traits of domestic rice by using tropical japonica varieties.展开更多
基金supported by Jiangsu Natural Science Fund, China (Grant No.BK20131224)Agricultural Prospective Fund from Yangzhou, China (Grant No.YZ2014168)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Narrow genetic background is a key limiting factor in breeding stable high-yielding rice. The introduction and utilization of international rice core germplasm is an important way to increase the genetic diversity of domestic rice varieties. We conducted a genome-wide association study on 5 panicle traits of 315 rice accessions introduced from the international rice micro-core germplasm bank. Based on the tests from Yangzhou of China and Arkansas of American, environment exhibited a significant impacts on panicle length and primary branch number, while grain length, grain width and grain length/width ratio were insensitive to environment changes. We discovered a total of 7, 5, 10, 8 and 6 chromosomal regions or single nucleotide polymorphism marker loci that were significantly associated with primary branch number, panicle length, grain length, grain width and grain length/width ratio, respectively. Among them, eleven regions were associated with grain shape and one region associated with primary branch number, showing the good consistence in two different environments. Significant linear correlation was discovered between the average trait value and the number of favorable alleles carried by the varieties in all associated loci. Among the associated loci, varieties in aromatic and tropical japonica sub-groups possessed most favorable alleles, while those in temperate japonica sub-group contained the least. The domestic varieties mainly harbored unfavorable alleles in six of the associated loci being detected. On the contrary, 15 varieties from 11 different countries harbored more favorable alleles (as many as 30 or more) than the others. Remarkably, all these 15 varieties belonged to the tropical japonica sub-group. In conclusion, our study demonstrates that varieties in the tropical japonica sub-group had high potentials for breeding stable high-yielding rice. Based on this discovery, we proposed a new approach for improving the panicle traits of domestic rice by using tropical japonica varieties.