为了降低高效视频编码(HEVC)标准的编码复杂度,提出一种基于纹理特性与空域相关性的帧内分级快速算法。首先,采用最大编码单元(LCU)级的快速算法,通过利用相邻LCU的编码深度值加权预测得到当前LCU的预测深度,并利用块标准差和自适应阈...为了降低高效视频编码(HEVC)标准的编码复杂度,提出一种基于纹理特性与空域相关性的帧内分级快速算法。首先,采用最大编码单元(LCU)级的快速算法,通过利用相邻LCU的编码深度值加权预测得到当前LCU的预测深度,并利用块标准差和自适应阈值策略确定当前LCU的纹理复杂度,将当前LCU的预测深度和纹理复杂度相结合来预测当前LCU的最有可能深度范围(MPDR);其次,采用编码单元(CU)级的深度判决快速算法(CUDD-FA),将基于边缘图的CU深度预判策略和基于率失真(RD)代价相关性的CU提前中止策略相结合,实现了CU级深度的提前确定,进一步降低了帧内编码复杂度。与原始HEVC算法相比,所提算法在全I帧编码模式下编码时间平均减少41.81%,BD-rate(Bjφntegaard Delta bit rate)仅上升0.74%,BDPSNR(Bjφntegaard Delta Peak Signal-to-Noise Rate)仅降低0.038 d B;与代表性文献算法相比,所提算法在编码时间节省更多的情况下率失真性能更好。实验结果表明,在率失真性能损失可以忽略不计的前提下,所提算法能有效降低HEVC帧内编码复杂度,特别是高分辨率视频序列,有利于HEVC的实时视频应用。展开更多
文摘为了降低高效视频编码(HEVC)标准的编码复杂度,提出一种基于纹理特性与空域相关性的帧内分级快速算法。首先,采用最大编码单元(LCU)级的快速算法,通过利用相邻LCU的编码深度值加权预测得到当前LCU的预测深度,并利用块标准差和自适应阈值策略确定当前LCU的纹理复杂度,将当前LCU的预测深度和纹理复杂度相结合来预测当前LCU的最有可能深度范围(MPDR);其次,采用编码单元(CU)级的深度判决快速算法(CUDD-FA),将基于边缘图的CU深度预判策略和基于率失真(RD)代价相关性的CU提前中止策略相结合,实现了CU级深度的提前确定,进一步降低了帧内编码复杂度。与原始HEVC算法相比,所提算法在全I帧编码模式下编码时间平均减少41.81%,BD-rate(Bjφntegaard Delta bit rate)仅上升0.74%,BDPSNR(Bjφntegaard Delta Peak Signal-to-Noise Rate)仅降低0.038 d B;与代表性文献算法相比,所提算法在编码时间节省更多的情况下率失真性能更好。实验结果表明,在率失真性能损失可以忽略不计的前提下,所提算法能有效降低HEVC帧内编码复杂度,特别是高分辨率视频序列,有利于HEVC的实时视频应用。