By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai re...By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has dif-ferent features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°―70°E in southwestern Yunnan to near EW in south-eastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsis-tent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.展开更多
Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and tem...Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen展开更多
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, ...Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation.展开更多
Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow ...Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.展开更多
This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet p...This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.展开更多
In this paper, variations of shear wave splitting in the 2013 Lushan Ms7.0 earthquake sequence were studied. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization dire...In this paper, variations of shear wave splitting in the 2013 Lushan Ms7.0 earthquake sequence were studied. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization directions and the delay time between fast and slow shear waves were derived from seismic recordings at eight stations on the southern segment of the Longmenshan fault zone. In the study region, the fast polarization directions show partition characteristics from south to north. And the systematic changes of the time delays between two split shear waves were also observed. As for spatial distribution, the NE fast polarization directions are consistent with the Longmenshan fault strike in the south of focal region, whereas the NW fast direction is parallel to the direction of regional principal compressive stress in the north of focal region. Stations BAX and TQU are respectively located on the Central and Front-range faults, and because of the direct influence of these faults, the fast directions at both stations show particularity. In time domain, after the main shock, the delay times at stations increased rapidly, and decreased after a period of time. Shear-wave splitting was caused mostly by stress-aligned microcracks in rock below the stations. The results demonstrate changes of local stress field during the main shock and the aftershocks. The stress on the Lushan Ms7.0 earthquake region increased after the main shock, with the stress release caused by the aftershocks and the stress reduced in the late stage.展开更多
The modeling methodologies and calculation of dynamic response of underground structure under Rayleigh waves is investigated in this paper. First the free field responses under Rayleigh waves are analyzed and the nume...The modeling methodologies and calculation of dynamic response of underground structure under Rayleigh waves is investigated in this paper. First the free field responses under Rayleigh waves are analyzed and the numerical results agree well with the theoretical results. Then, the approximate Rayleigh waves are put forward based on the preliminary re- search, and Rayleigh wave field is obtained through fast Fourier transform technique. Taking a utility tunnel as an example, its dynamic responses under Rayleigh waves is calculated by ABAQUS. The results demonstrate that bending deformation is the main component of structural deformation and the deformation at the top of the structure is about twice as much as that at bottom of the structure. The effect of soil-structure interface and the buried depth of underground structure are also investi- gated via parameter analysis. For the shallow buffed underground structures, Rayleigh waves can be the key factor to control the responses and damage of the structure.展开更多
Fast ICA算法是基于一批已取得的样本数据进行处理,它不适用信道矩阵变化的情况;虽基于自然梯度的Info max法是根据单次观测的样本值来调整分离矩阵,但它仅适合单类信源情况。在信道恒定和变化情况下,仿真比较上述算法的优缺点,同时为...Fast ICA算法是基于一批已取得的样本数据进行处理,它不适用信道矩阵变化的情况;虽基于自然梯度的Info max法是根据单次观测的样本值来调整分离矩阵,但它仅适合单类信源情况。在信道恒定和变化情况下,仿真比较上述算法的优缺点,同时为解决在线算法中收敛速度和稳态误差的矛盾,提出一种改进的变步长算法。该算法将步长变化与信号的分离程度相联系,根据信号之间的相似性测度变化量自适应地控制步长,最后仿真验证该算法的实用性。展开更多
针对滚动轴承早期故障特征提取困难的问题,提出一种LMS(Least Mean Square,LMS)算法降噪、FastKurtogram选频和共振解调技术相结合的滚动轴承故障诊断方法。首先对采集到的信号进行自适应降噪,减弱背景噪声的影响;然后利用谱峭度值对故...针对滚动轴承早期故障特征提取困难的问题,提出一种LMS(Least Mean Square,LMS)算法降噪、FastKurtogram选频和共振解调技术相结合的滚动轴承故障诊断方法。首先对采集到的信号进行自适应降噪,减弱背景噪声的影响;然后利用谱峭度值对故障信号中瞬态成分敏感的特性,通过计算降噪后信号的快速峭度图,确定滤波器最优频带中心和带宽;最后进行共振包络解调提取出滚动轴承早期故障特征。通过仿真和实验验证分析,验证了该方法在滚动轴承早期故障诊断中的适用性和有效性。展开更多
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
An accelerated micro-foil is used to ignite a pre-compressed cylindrical shell containing deuterium–tritium fuel.The well-known shock wave ignition criterion and a novel criterion based on heat wave ignition are deve...An accelerated micro-foil is used to ignite a pre-compressed cylindrical shell containing deuterium–tritium fuel.The well-known shock wave ignition criterion and a novel criterion based on heat wave ignition are developed in this work.It is shown that for heat ignition very high impact velocities are required.It is suggested that a multi-petawatt laser can accelerate a micro-foil to relativistic velocities in a very short time duration(picosecond)of the laser pulse.The cylindrical geometry suggested here for the fast ignition approach has the advantage of geometrically separating the nanosecond lasers that compress the target from the picosecond laser that accelerates the foil.The present model suggests that nuclear fusion by micro-foil impact ignition could be attained with currently existing technology.展开更多
基金the Continental Dynamics Program of the National Natural Science Foundation of China (Grant No. 40334041)the International Cooperation Pro-gram of the Ministry of Science and Technology of China (Grant No. 2003DF000011)
文摘By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has dif-ferent features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°―70°E in southwestern Yunnan to near EW in south-eastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsis-tent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.
基金supported by National Natural Science Foundation of China (Grant Nos. 40904023 and 90914005)the Special Project for the Fundamental R & D of Institute of Geophysics,China Earthquake Administration (Grant Nos. DQJB06B06, DQJB10B16)the Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)
文摘Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen
基金Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06)Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)+1 种基金China Digital Earthquake Observation Network Project "North China Seismic Array"National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)
文摘Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation.
基金the National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)the Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06)the Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)
文摘Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.
基金supported by the National Natural Science Foundation of China (Grant No. 50779004)
文摘This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40904023, 41274063 and 41174070)Scientific Investigation of April 20, 2013 M7.0 Sichuan Lushan Earthquake
文摘In this paper, variations of shear wave splitting in the 2013 Lushan Ms7.0 earthquake sequence were studied. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization directions and the delay time between fast and slow shear waves were derived from seismic recordings at eight stations on the southern segment of the Longmenshan fault zone. In the study region, the fast polarization directions show partition characteristics from south to north. And the systematic changes of the time delays between two split shear waves were also observed. As for spatial distribution, the NE fast polarization directions are consistent with the Longmenshan fault strike in the south of focal region, whereas the NW fast direction is parallel to the direction of regional principal compressive stress in the north of focal region. Stations BAX and TQU are respectively located on the Central and Front-range faults, and because of the direct influence of these faults, the fast directions at both stations show particularity. In time domain, after the main shock, the delay times at stations increased rapidly, and decreased after a period of time. Shear-wave splitting was caused mostly by stress-aligned microcracks in rock below the stations. The results demonstrate changes of local stress field during the main shock and the aftershocks. The stress on the Lushan Ms7.0 earthquake region increased after the main shock, with the stress release caused by the aftershocks and the stress reduced in the late stage.
基金supported by key project of the National Science and Technology Pillar Program (Grant No. 2006BAJ03B03)Research Fund from State Key Laboratory for Disaster Reduction in Civil Engineering (Grand No. SLDRCE08-C-03)
文摘The modeling methodologies and calculation of dynamic response of underground structure under Rayleigh waves is investigated in this paper. First the free field responses under Rayleigh waves are analyzed and the numerical results agree well with the theoretical results. Then, the approximate Rayleigh waves are put forward based on the preliminary re- search, and Rayleigh wave field is obtained through fast Fourier transform technique. Taking a utility tunnel as an example, its dynamic responses under Rayleigh waves is calculated by ABAQUS. The results demonstrate that bending deformation is the main component of structural deformation and the deformation at the top of the structure is about twice as much as that at bottom of the structure. The effect of soil-structure interface and the buried depth of underground structure are also investi- gated via parameter analysis. For the shallow buffed underground structures, Rayleigh waves can be the key factor to control the responses and damage of the structure.
文摘针对滚动轴承早期故障特征提取困难的问题,提出一种LMS(Least Mean Square,LMS)算法降噪、FastKurtogram选频和共振解调技术相结合的滚动轴承故障诊断方法。首先对采集到的信号进行自适应降噪,减弱背景噪声的影响;然后利用谱峭度值对故障信号中瞬态成分敏感的特性,通过计算降噪后信号的快速峭度图,确定滤波器最优频带中心和带宽;最后进行共振包络解调提取出滚动轴承早期故障特征。通过仿真和实验验证分析,验证了该方法在滚动轴承早期故障诊断中的适用性和有效性。
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
文摘An accelerated micro-foil is used to ignite a pre-compressed cylindrical shell containing deuterium–tritium fuel.The well-known shock wave ignition criterion and a novel criterion based on heat wave ignition are developed in this work.It is shown that for heat ignition very high impact velocities are required.It is suggested that a multi-petawatt laser can accelerate a micro-foil to relativistic velocities in a very short time duration(picosecond)of the laser pulse.The cylindrical geometry suggested here for the fast ignition approach has the advantage of geometrically separating the nanosecond lasers that compress the target from the picosecond laser that accelerates the foil.The present model suggests that nuclear fusion by micro-foil impact ignition could be attained with currently existing technology.