光伏电池的输出特性会随着外界环境的变化而改变,利用最大功率点跟踪(maximum power point tracking,MPPT)技术可有效提高光伏发电系统的效率。针对现有MPPT控制方法的不足,提出了一种基于改进型变步长电导增量法的MPPT控制方法。该方...光伏电池的输出特性会随着外界环境的变化而改变,利用最大功率点跟踪(maximum power point tracking,MPPT)技术可有效提高光伏发电系统的效率。针对现有MPPT控制方法的不足,提出了一种基于改进型变步长电导增量法的MPPT控制方法。该方法采用一种新的步长调整系数,可根据外界环境变化自动调整步长,即使光照剧烈变化时,系统始终保持较大步长运行,克服了传统变步长算法启动速度和光照剧烈变化时动态响应速度慢的问题;同时采用电压闭环控制,提高了系统的整体稳定性。仿真和实验结果证明了该方法的可行性。展开更多
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment that can enhance the recovery of neurological function after stroke. Whether it can similarly promote the recovery of cognitive functio...Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment that can enhance the recovery of neurological function after stroke. Whether it can similarly promote the recovery of cognitive function after vascular dementia remains unknown, In this study, a rat model for vascular dementia was established by the two-vessel occlusion method. Two days after injury, 30 pulses of rTMS were ad- ministered to each cerebral hemisphere at a frequency of 0.5 Hz and a magnetic field intensity of 1,33 T. The Morris water maze test was used to evaluate learning and memory function. The Karnovsky-Roots method was performed to determine the density of cholinergic neurons in the hippocampal CA1 region. Immunohistochemical staining was used to determine the number of brain-derived neurotroph- ic factor (BDNF)-immunoreactive cells in the hippocampal CA1 region, rTMS treatment for 30 days significantly improved learning and memory function, increased acetylcholinesterase and choline acetyltransferase activity, increased the density of cholinergic neurons, and increased the number of BDNF-immunoreactive cells. These results indicate that rTMS can ameliorate learning and memory deficiencies in rats with vascular dementia, The mechanism through which this occurs might be related to the promotion of BDNF expression and subsequent restoration of cholinergic system activity in hippocampal CA 1 region.展开更多
文摘光伏电池的输出特性会随着外界环境的变化而改变,利用最大功率点跟踪(maximum power point tracking,MPPT)技术可有效提高光伏发电系统的效率。针对现有MPPT控制方法的不足,提出了一种基于改进型变步长电导增量法的MPPT控制方法。该方法采用一种新的步长调整系数,可根据外界环境变化自动调整步长,即使光照剧烈变化时,系统始终保持较大步长运行,克服了传统变步长算法启动速度和光照剧烈变化时动态响应速度慢的问题;同时采用电压闭环控制,提高了系统的整体稳定性。仿真和实验结果证明了该方法的可行性。
基金supported by a grant from the Major Project of Educational Commission of Hubei Province of China,No.D20152101
文摘Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive treatment that can enhance the recovery of neurological function after stroke. Whether it can similarly promote the recovery of cognitive function after vascular dementia remains unknown, In this study, a rat model for vascular dementia was established by the two-vessel occlusion method. Two days after injury, 30 pulses of rTMS were ad- ministered to each cerebral hemisphere at a frequency of 0.5 Hz and a magnetic field intensity of 1,33 T. The Morris water maze test was used to evaluate learning and memory function. The Karnovsky-Roots method was performed to determine the density of cholinergic neurons in the hippocampal CA1 region. Immunohistochemical staining was used to determine the number of brain-derived neurotroph- ic factor (BDNF)-immunoreactive cells in the hippocampal CA1 region, rTMS treatment for 30 days significantly improved learning and memory function, increased acetylcholinesterase and choline acetyltransferase activity, increased the density of cholinergic neurons, and increased the number of BDNF-immunoreactive cells. These results indicate that rTMS can ameliorate learning and memory deficiencies in rats with vascular dementia, The mechanism through which this occurs might be related to the promotion of BDNF expression and subsequent restoration of cholinergic system activity in hippocampal CA 1 region.