Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is ...Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.展开更多
In the present investigation, the microstructures and growth morphology of Mg32(Al,Zn)49 Frank-Kasper phase in rapidly solidified Mg32Al17Zn32 temary alloys were studied in detail. The samples were characterised by ...In the present investigation, the microstructures and growth morphology of Mg32(Al,Zn)49 Frank-Kasper phase in rapidly solidified Mg32Al17Zn32 temary alloys were studied in detail. The samples were characterised by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and energy dispersive spectrum (EDS). The results show that the microstructures mainly consist of Mg3e(Al,Zn)49 Frank-Kasper phase and interdendritic Mg-rich O-phase. Under rapid solidification condition, Mg32(Al,Zn)49 Frank-Kasper phase reveals a perfect faceted dendritic characteristic in the shape of a three-fold symmetric microstructure with doublet tips in the axes direction. Observations for fracture surfaces show that the growth morphology of Mg32(Al,Zn)49 grains was truncated cubic, and its growth mechanism was also discussed.展开更多
基金Projects(50331040 60171034) supported by the National Natural Science Foundation of China
文摘Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.
基金the National Natural Science Foundation of China (No. 50571081)the Aeronautical Science Foundation of China (No. 04G53042) for their financial support
文摘In the present investigation, the microstructures and growth morphology of Mg32(Al,Zn)49 Frank-Kasper phase in rapidly solidified Mg32Al17Zn32 temary alloys were studied in detail. The samples were characterised by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM) and energy dispersive spectrum (EDS). The results show that the microstructures mainly consist of Mg3e(Al,Zn)49 Frank-Kasper phase and interdendritic Mg-rich O-phase. Under rapid solidification condition, Mg32(Al,Zn)49 Frank-Kasper phase reveals a perfect faceted dendritic characteristic in the shape of a three-fold symmetric microstructure with doublet tips in the axes direction. Observations for fracture surfaces show that the growth morphology of Mg32(Al,Zn)49 grains was truncated cubic, and its growth mechanism was also discussed.