A novel low-complexity iterative receiver for multiuser space frequency block coding (SFBC) system was proposed in this paper. Unlike the conventional linear minimum mean square error (MMSE) detector, which requires m...A novel low-complexity iterative receiver for multiuser space frequency block coding (SFBC) system was proposed in this paper. Unlike the conventional linear minimum mean square error (MMSE) detector, which requires matrix inversion at each iteration, the soft-in soft-out (SISO) detector is simply a parallel interference cancellation (PIC)-matched filter (MF) operation. The probability density function (PDF) of PIC-MF detector output is approximated as Gaussian, whose variance is calculated with a priori information fed back from the channel decoder. With this approximation, the log likelihood ratios (LLRs) of transmitted bits are under-estimated. Then the LLRs are multiplied by a constant factor to achieve a performance gain. The constant factor is optimized according to extrinsic information transfer (EXIT) chart of the SISO detector. Simulation results show that the proposed iterative receiver can significantly improve the system performance and converge to the matched filter bound (MFB) with low computational complexity at high signal-to-noise ratios (SNRs).展开更多
In this paper,we propose a novel iterative scheme for exploiting transmit diversity using parallel independent Inter-Symbol Interference (ISI) channels. In this adaptive iterative scheme,we use EXtrinsic Information T...In this paper,we propose a novel iterative scheme for exploiting transmit diversity using parallel independent Inter-Symbol Interference (ISI) channels. In this adaptive iterative scheme,we use EXtrinsic Information Transfer (EXIT) chart tool to choose appropriate iterative method from Itera-tive Combining (IC),used as parallel concatenation turbo-like scheme,and Turbo Equalization (TE),used as serial concatenation turbo-like scheme. It is show that the proposed iterative scheme provides excellent performance both analytically and through simulations without any compute complexity increase comparable to IC.展开更多
When implementing helicopter-satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the ...When implementing helicopter-satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the helicopter. The helicopter-satellite channel model and the Forward Error Control(FEC) coding countermeasure are presented in this paper. On the basis of this model, Check-Hybrid(CH) Low-Density Parity-Check(LDPC)codes are designed to mitigate the periodical blockage over the helicopter-satellite channels. The CH-LDPC code is derived by replacing part of single parity-check code constraints in a Quasi-Cyclic LDPC(QC-LDPC) code by using more powerful linear block code constraints. In particular, a method of optimizing the CH-LDPC code ensemble by searching the best matching component code among a variety of linear block codes using extrinsic information transfer charts is proposed. Simulation results show that, the CH-LDPC coding scheme designed for the helicopter-satellite channels in this paper achieves more than 25% bandwidth efficiency improvement, compared with the FEC scheme that uses QC-LDPC codes.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM ...The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.展开更多
基金The Science and Technology Committee of Shanghai Municipality ( No 06DZ15013,No03DZ15010)
文摘A novel low-complexity iterative receiver for multiuser space frequency block coding (SFBC) system was proposed in this paper. Unlike the conventional linear minimum mean square error (MMSE) detector, which requires matrix inversion at each iteration, the soft-in soft-out (SISO) detector is simply a parallel interference cancellation (PIC)-matched filter (MF) operation. The probability density function (PDF) of PIC-MF detector output is approximated as Gaussian, whose variance is calculated with a priori information fed back from the channel decoder. With this approximation, the log likelihood ratios (LLRs) of transmitted bits are under-estimated. Then the LLRs are multiplied by a constant factor to achieve a performance gain. The constant factor is optimized according to extrinsic information transfer (EXIT) chart of the SISO detector. Simulation results show that the proposed iterative receiver can significantly improve the system performance and converge to the matched filter bound (MFB) with low computational complexity at high signal-to-noise ratios (SNRs).
基金Supported by the National Natural Science Foundation of China (No.60372030)China Ministry of Education Foundation for Visiting Scholar (No.[2003]406)Key Project of Provincial Scientific Foundation of Shandong (No.Z2003G02).
文摘In this paper,we propose a novel iterative scheme for exploiting transmit diversity using parallel independent Inter-Symbol Interference (ISI) channels. In this adaptive iterative scheme,we use EXtrinsic Information Transfer (EXIT) chart tool to choose appropriate iterative method from Itera-tive Combining (IC),used as parallel concatenation turbo-like scheme,and Turbo Equalization (TE),used as serial concatenation turbo-like scheme. It is show that the proposed iterative scheme provides excellent performance both analytically and through simulations without any compute complexity increase comparable to IC.
基金supported by the National Natural Science Foundation of China(No.91538203)the new strategic industries development projects of Shenzhen City(No.JCYJ20150403155812833)
文摘When implementing helicopter-satellite communications, periodical interruption of the received signal is a challenging problem because the communication antenna is intermittently blocked by the rotating blades of the helicopter. The helicopter-satellite channel model and the Forward Error Control(FEC) coding countermeasure are presented in this paper. On the basis of this model, Check-Hybrid(CH) Low-Density Parity-Check(LDPC)codes are designed to mitigate the periodical blockage over the helicopter-satellite channels. The CH-LDPC code is derived by replacing part of single parity-check code constraints in a Quasi-Cyclic LDPC(QC-LDPC) code by using more powerful linear block code constraints. In particular, a method of optimizing the CH-LDPC code ensemble by searching the best matching component code among a variety of linear block codes using extrinsic information transfer charts is proposed. Simulation results show that, the CH-LDPC coding scheme designed for the helicopter-satellite channels in this paper achieves more than 25% bandwidth efficiency improvement, compared with the FEC scheme that uses QC-LDPC codes.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金supported by the National Natural Science Foundation of China(61171101)the State Major Science and Technology Special Projects(2009ZX03003-011-03)
文摘The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.