Lithium is known as the“white petroleum”of the electrification era,and the global demand for lithium grows rapidly with the quick development of new energy industry.The aqueous solutions,such as salt lake brine,unde...Lithium is known as the“white petroleum”of the electrification era,and the global demand for lithium grows rapidly with the quick development of new energy industry.The aqueous solutions,such as salt lake brine,underground brine,and seawater,have large lithium reserves,thus this kind of lithium resource has become a research hotspot recently.Compared with other lithium extraction technologies,electro-sorption method shows good prospects for practical applications with advantages in the aspects of efficiency,recovery ratio,cost,and environment.Herein,this review covers recent progress on electro-sorption technology for lithium recovery from aqueous solutions,including the concept illustration,research progress of the applied working electrodes and counter electrodes,and the evaluation indicators of electro-sorption system.Meanwhile,some prospects for the development of this technology are also proposed.We hope this review is beneficial for the construction of high-efficient electrochemical lithium recovery system to achieve an adequate lithium supply in the future.展开更多
Gallium nitride (GaN) based light emitting diodes (LEDs) with a thick and high quality ZnO film as a current spreading layer grown by metal-source vapor phase epitaxy (MVPE) are fabricated successfully. Compared...Gallium nitride (GaN) based light emitting diodes (LEDs) with a thick and high quality ZnO film as a current spreading layer grown by metal-source vapor phase epitaxy (MVPE) are fabricated successfully. Compared with GaN-based LEDs employing a Ni/Au or an indium tin oxide transparent current spreading layer, these LEDs show an enhancement of the external quantum efficiency of 93% and 35% at a forward current of 20 mA, respectively. The full width at half maximum of the ZnO (002) ω-scan rocking curve is 93 arcsec, which corresponds to a high crystal quality of the ZnO film. Optical microscopy and atomic force microscopy are used to observe the surface morphology of the ZnO film, and many regular hexagonal features are found. A spectrophotometer is used to study the different absorption properties between the ZnO film and the indium tin oxide film of the GaN LED. The mechanisms of the extraction quantum efficiency increase and the series resistance change of the GaN-based LEDs with ZnO transparent current spreading layers are analyzed.展开更多
The processes of electric ion extraction from plasma induced by pulse lasers are simulated by particle-in-cell(PIC)method and hybrid-PIC method.A new calculation scheme named preprocessing hybrid-PIC is presented beca...The processes of electric ion extraction from plasma induced by pulse lasers are simulated by particle-in-cell(PIC)method and hybrid-PIC method.A new calculation scheme named preprocessing hybrid-PIC is presented because neither of the two methods above is omnipotent,especially under the circumstance of high initial plasma density.The new scheme provides credible results with less computational consumption than PIC method in both one-and two-dimensional simulations,except forΠ-type electrode configuration.The simulation results show that the M-type performs best in all electrode configurations in both high-density and low-density plasma conditions.展开更多
基金supported by Huaneng Clean Energy Research Institute Found Project(No.CERI/TU-23-CERI03).
文摘Lithium is known as the“white petroleum”of the electrification era,and the global demand for lithium grows rapidly with the quick development of new energy industry.The aqueous solutions,such as salt lake brine,underground brine,and seawater,have large lithium reserves,thus this kind of lithium resource has become a research hotspot recently.Compared with other lithium extraction technologies,electro-sorption method shows good prospects for practical applications with advantages in the aspects of efficiency,recovery ratio,cost,and environment.Herein,this review covers recent progress on electro-sorption technology for lithium recovery from aqueous solutions,including the concept illustration,research progress of the applied working electrodes and counter electrodes,and the evaluation indicators of electro-sorption system.Meanwhile,some prospects for the development of this technology are also proposed.We hope this review is beneficial for the construction of high-efficient electrochemical lithium recovery system to achieve an adequate lithium supply in the future.
基金Project supported by the Program of the Institute of Semiconductors,Chinese Academy of Sciences(No.ISCAS2008T14)
文摘Gallium nitride (GaN) based light emitting diodes (LEDs) with a thick and high quality ZnO film as a current spreading layer grown by metal-source vapor phase epitaxy (MVPE) are fabricated successfully. Compared with GaN-based LEDs employing a Ni/Au or an indium tin oxide transparent current spreading layer, these LEDs show an enhancement of the external quantum efficiency of 93% and 35% at a forward current of 20 mA, respectively. The full width at half maximum of the ZnO (002) ω-scan rocking curve is 93 arcsec, which corresponds to a high crystal quality of the ZnO film. Optical microscopy and atomic force microscopy are used to observe the surface morphology of the ZnO film, and many regular hexagonal features are found. A spectrophotometer is used to study the different absorption properties between the ZnO film and the indium tin oxide film of the GaN LED. The mechanisms of the extraction quantum efficiency increase and the series resistance change of the GaN-based LEDs with ZnO transparent current spreading layers are analyzed.
文摘The processes of electric ion extraction from plasma induced by pulse lasers are simulated by particle-in-cell(PIC)method and hybrid-PIC method.A new calculation scheme named preprocessing hybrid-PIC is presented because neither of the two methods above is omnipotent,especially under the circumstance of high initial plasma density.The new scheme provides credible results with less computational consumption than PIC method in both one-and two-dimensional simulations,except forΠ-type electrode configuration.The simulation results show that the M-type performs best in all electrode configurations in both high-density and low-density plasma conditions.